While post-training quantization receives popularity mostly due to its evasion in accessing the original complete training dataset, its poor performance also stems from this limitation. To alleviate this limitation, in this paper, we leverage the synthetic data introduced by zero-shot quantization with calibration dataset and we propose a fine-grained data distribution alignment (FDDA) method to boost the performance of post-training quantization. The method is based on two important properties of batch normalization statistics (BNS) we observed in deep layers of the trained network, i.e., inter-class separation and intra-class incohesion. To preserve this fine-grained distribution information: 1) We calculate the per-class BNS of the calibration dataset as the BNS centers of each class and propose a BNS-centralized loss to force the synthetic data distributions of different classes to be close to their own centers. 2) We add Gaussian noise into the centers to imitate the incohesion and propose a BNS-distorted loss to force the synthetic data distribution of the same class to be close to the distorted centers. By introducing these two fine-grained losses, our method shows the state-of-the-art performance on ImageNet, especially when the first and last layers are quantized to low-bit as well. Our project is available at https://github.com/zysxmu/FDDA.


翻译:虽然培训后四分制主要因其在获取最初完整的培训数据集方面逃避,而其业绩不佳也源于这一限制。为了减少这一限制,我们在本文中利用以校准数据集引入的零点四分法引入的合成数据,并提议采用微微分数据分配协调(FDDA)方法,以提高培训后四分制的绩效。该方法基于在经过培训的网络深层中我们观察到的批次正常化统计数据的两个重要属性,即阶级间分离和阶级内部混凝土。为了保存这一精细的分发信息:1)我们计算校准数据集作为每类BNS中心的每类BNS,并提出一种BNS集中化的数据分配方法,以迫使不同班的合成数据分配在离自己的中心很近的地方进行。(2)我们在中心增加高斯语噪音,以模仿混凝土,并提议BNS分解损失同一类的合成数据在离扭曲中心很近的地方分发。我们采用的最后两种精密的SDRFDFS/QA方法,这是我们最后一种精确的状态。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
【ICLR2020-Facebook AI】张量分解的时序知识图谱补全
专知会员服务
58+阅读 · 2020年4月14日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
8+阅读 · 2021年10月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员