Electricity price forecasting is an essential task in all the deregulated markets of the world. The accurate prediction of the day-ahead electricity prices is an active research field and available data from various markets can be used as an input for forecasting. A collection of models have been proposed for this task, but the fundamental question on how to use the available big data is often neglected. In this paper, we propose to use transfer learning as a tool for utilizing information from other electricity price markets for forecasting. We pre-train a neural network model on source markets and finally do a fine-tuning for the target market. Moreover, we test different ways to use the rich input data from various electricity price markets. Our experiments on four different day-ahead markets indicate that transfer learning improves the electricity price forecasting performance in a statistically significant manner. Furthermore, we compare our results with stateof-the-art methods in a rolling window scheme to demonstrate the performance of the transfer learning approach.
翻译:电力价格预测是全世界所有不受管制的市场的一项基本任务。准确预测日头电价是一个积极的研究领域,各种市场的现有数据可以用作预测的投入。已经为这项任务提出了一系列模型,但关于如何使用现有大数据的基本问题往往被忽视。在本文中,我们提议利用转让学习作为工具,利用其他电力价格市场的信息进行预测。我们在源市场对神经网络模型进行预先培训,并最终对目标市场进行微调。此外,我们测试了利用不同电价市场的丰富投入数据的不同方法。我们在四个不同的日头市场的实验表明,转让学习以具有统计意义的方式改善了电价预测的绩效。此外,我们将我们的成果与滚动窗口计划中的最新方法进行比较,以展示转移学习方法的绩效。