We consider the problem of automatically generating longer stories of over two thousand words. Compared to prior work on shorter stories, long-range plot coherence and relevance are more central challenges here. We propose the Recursive Reprompting and Revision framework (Re3) to address these challenges by (a) prompting a general-purpose language model to construct a structured overarching plan, and (b) generating story passages by repeatedly injecting contextual information from both the plan and current story state into a language model prompt. We then revise by (c) reranking different continuations for plot coherence and premise relevance, and finally (d) editing the best continuation for factual consistency. Compared to similar-length stories generated directly from the same base model, human evaluators judged substantially more of Re3's stories as having a coherent overarching plot (by 14% absolute increase), and relevant to the given initial premise (by 20%).
翻译:我们考虑的是自动生成超过两千字长故事的问题。 与以前关于短故事的工作相比,长篇大论的一致性和关联性更是核心挑战。 我们提议了“再续和修订框架(RE3) ” 来应对这些挑战,办法是:(a) 推动一个通用语言模式,以构建一个结构化的总体计划;(b) 反复将计划和当前故事状态的背景资料注入一个语言模式,从而产生故事段落。 然后,我们修订:(c) 重新排列不同内容的连续顺序,以保持剧情的一致性和前提相关性,最后(d) 为事实一致性编辑最佳的连续内容。 与直接由同一基本模型生成的类似长故事相比,人类评估者认为“三”故事具有连贯的总体情节(增加14%绝对增长),而且与给定的初始前提相关(增加20% ) 。