Modern recommender systems face an increasing need to explain their recommendations. Despite considerable progress in this area, evaluating the quality of explanations remains a significant challenge for researchers and practitioners. Prior work mainly conducts human study to evaluate explanation quality, which is usually expensive, time-consuming, and prone to human bias. In this paper, we propose an offline evaluation method that can be computed without human involvement. To evaluate an explanation, our method quantifies its counterfactual impact on the recommendation. To validate the effectiveness of our method, we carry out an online user study. We show that, compared to conventional methods, our method can produce evaluation scores more correlated with the real human judgments, and therefore can serve as a better proxy for human evaluation. In addition, we show that explanations with high evaluation scores are considered better by humans. Our findings highlight the promising direction of using the counterfactual approach as one possible way to evaluate recommendation explanations.


翻译:现代推荐人系统面临越来越多的解释建议的必要性。尽管在这一领域取得了相当大的进展,但评估解释质量仍然是研究人员和从业人员面临的重大挑战。先前的工作主要是进行人类研究,以评价解释质量,而解释质量通常费用昂贵、耗时且容易产生人类偏见。我们在本文件中建议采用离线评价方法,在没有人类参与的情况下可以计算;为了评估解释,我们的方法量化了它对建议产生的反事实影响。为了验证我们的方法的有效性,我们进行了在线用户研究。我们表明,与传统方法相比,我们的方法可以产生与实际人类判断更相关的评价分数,因此可以更好地作为人类评价的替代物。此外,我们显示,高评价分的解释被人类认为是更好的。我们的调查结果强调了使用反事实方法作为评价建议解释的一种可能方式的有希望的方向。

0
下载
关闭预览

相关内容

【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
26+阅读 · 2022年9月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员