Multi-organ segmentation is a critical task in computer-aided diagnosis. While recent deep learning methods have achieved remarkable success in image segmentation, huge variations in organ size and shape challenge their effectiveness in multi-organ segmentation. To address these challenges, we propose a Spatial Prior-Guided Cross Dual Encoder Network (SPG-CDENet), a novel two-stage segmentation paradigm designed to improve multi-organ segmentation accuracy. Our SPG-CDENet consists of two key components: a spatial prior network and a cross dual encoder network. The prior network generates coarse localization maps that delineate the approximate ROI, serving as spatial guidance for the dual encoder network. The cross dual encoder network comprises four essential components: a global encoder, a local encoder, a symmetric cross-attention module, and a flow-based decoder. The global encoder captures global semantic features from the entire image, while the local encoder focuses on features from the prior network. To enhance the interaction between the global and local encoders, a symmetric cross-attention module is proposed across all layers of the encoders to fuse and refine features. Furthermore, the flow-based decoder directly propagates high-level semantic features from the final encoder layer to all decoder layers, maximizing feature preservation and utilization. Extensive qualitative and quantitative experiments on two public datasets demonstrate the superior performance of SPG-CDENet compared to existing segmentation methods. Furthermore, ablation studies further validate the effectiveness of the proposed modules in improving segmentation accuracy.
 翻译:暂无翻译