Manual prescription of the field of view (FOV) by MRI technologists is variable and prolongs the scanning process. Often, the FOV is too large or crops critical anatomy. We propose a deep-learning framework, trained by radiologists' supervision, for automating FOV prescription. An intra-stack shared feature extraction network and an attention network are used to process a stack of 2D image inputs to generate output scalars defining the location of a rectangular region of interest (ROI). The attention mechanism is used to make the model focus on the small number of informative slices in a stack. Then the smallest FOV that makes the neural network predicted ROI free of aliasing is calculated by an algebraic operation derived from MR sampling theory. We retrospectively collected 595 cases between February 2018 and February 2022. The framework's performance is examined quantitatively with intersection over union (IoU) and pixel error on position, and qualitatively with a reader study. We use the t-test for comparing quantitative results from all models and a radiologist. The proposed model achieves an average IoU of 0.867 and average ROI position error of 9.06 out of 512 pixels on 80 test cases, significantly better (P<0.05) than two baseline models and not significantly different from a radiologist (P>0.12). Finally, the FOV given by the proposed framework achieves an acceptance rate of 92% from an experienced radiologist.
翻译:MARI 技术专家对观测领域的手册处方( FOV) 的描述是可变的, 延长扫描过程。 通常, FOV 过于庞大或作物非常关键的解剖过程。 我们提议了一个深学习框架, 由放射学家的监督下培训, 将FOV处处的处方自动化。 我们追溯地收集了2018年2月至2022年2月的595个案例。 该框架的性能与联盟(IoU)和像素在位置上的误差的交叉点进行了定量审查,与一项读者研究进行了定性研究。 我们使用关注机制将模型的焦点放在堆叠中数量不多的信息切片上。 然后, 最小的FOV 使神经网络预测ROI无别名的最小的FOVFOF, 由来自MR(M) 采样学理论的代算算算算算出。 我们用T- 将所有模型的定量结果进行比较, 从所有模型和放射学家中得出。 0.0PRAFRS > 5 中, 平均的I 0.06 和 IMIS 平均测算出一个 0. 5 10 的测试率。