Principal component analysis (PCA) is a well-known tool for dimension reduction. It can summarise the data in fewer than the original number of dimensions without losing essential information. However, when data are dispersed across multiple servers, communication cost can't make PCA useful in this situation. Thus distributed algorithms for PCA are needed. Fan et al. [Annals of statistics $\textbf{47}$(6) (2019) 3009-3031] proposed a distributed PCA algorithm to settle this problem. On each server, They computed the $K$ leading eigenvectors $\widehat{V}_{K}^{(\ell)}=\left(\widehat{v}_{1}^{(\ell)}, \ldots, \widehat{v}_{K}^{(\ell)}\right) \in \mathbb{R}^{d \times K}$ of the sample covariance matrix $\widehat{\Sigma}$ and sent $\widehat{V}_{K}^{(\ell)}$ to the data center. In this paper, we introduce robust covariance matrix estimators respectively proposed by Minsker [Annals of statistics $\textbf{46}$(6A) (2018) 2871-2903] and Ke et al. [Statistical Science $\textbf{34}$(3) (2019) 454-471] into the distributed PCA algorithm and compute its top $K$ eigenvectors on each server and transmit them to the central server. We investigate the statistical error of the resulting distributed estimator and derive the rate of convergence for distributed PCA estimators for symmetric innovation distribution and general distribution. By simulation study, the theoretical results are verified. Also, we extend our analysis to the heterogeneous case with weaker moments where samples on each server and across servers are independent and their population covariance matrices are different but share the same top $K$ eigenvectors.
翻译:首席元件分析( PCA) 是一个众所周知的降低维度的工具 。 它可以以低于原始维度数量的数量来总结数据。 但是, 当数据分散于多个服务器时, 通信成本无法使五氯苯在此情况下有用 。 因此, 需要分配 CPA 的算法 。 Fan et al. [统计年鉴 $\ textbf{47} (2019) 3009- 3031] 提议一个分布式 CPA 算法来解决这个问题 。 在每一个服务器上, 它们计算出 $K$$( $%54} (\ell) left (\ bloyhat{v% 1} (ell)}, 当数据在多个服务器上分布时 。 在本文上, 我们引入了更强的 compreflicalal=rlational_ klistal_ral_ disal_ dismalateal disalations 4ral_ kyal_ dreal_ dreal_ disal_ dismal_ disqal disal_ disqual_ 4ral_ disqal_ 4ral_ disqal disal_ ex disqal_ diral_ 4ral_ legal_ legal_ legal_ legal_ legal_ legal__ dal_ dal_ legal_ legal_ legal_ legal_dal_ legal_ legal dal disal_ legal_ legal_ legal__ral_ral__________al dal dal dal dal dal dal dal dal dal dal dal dal dal dal dal dal dal dal dalalal dal dal dal dal dal dal dal dal dal dal dal dal dal dal dal dal dal dal dal dal dal dal dal diral diral diralalalsal disal diral diral dal