In Mombeni et al. (2019), Birnbaum-Saunders and Weibull kernel estimators were introduced for the estimation of cumulative distribution functions (c.d.f.s) supported on the half-line $[0,\infty)$. They were the first authors to use asymmetric kernels in the context of c.d.f. estimation. Their estimators were shown to perform better numerically than traditional methods such as the basic kernel method and the boundary modified version from Tenreiro (2013). In the present paper, we complement their study by introducing five new asymmetric kernel c.d.f. estimators, namely the Gamma, inverse Gamma, lognormal, inverse Gaussian and reciprocal inverse Gaussian kernel c.d.f. estimators. For these five new estimators, we prove the asymptotic normality and we find asymptotic expressions for the following quantities: bias, variance, mean squared error and mean integrated squared error. A numerical study then compares the performance of the five new c.d.f. estimators against traditional methods and the Birnbaum-Saunders and Weibull kernel c.d.f. estimators from Mombeni et al. (2019). By using the same experimental design, we show that the lognormal and Birnbaum-Saunders kernel c.d.f. estimators perform the best overall, while the other asymmetric kernel estimators are sometimes better but always at least competitive against the boundary kernel method.


翻译:在Mombeni等人(2019年)中,Birnbaum-Saunders和Weibull内核估测器被引入了半线 $[0,\ infty] 支持的累积分布函数(c.d.fys.) 估计。它们是第一个在 c.d.f. 估测器中使用不对称内核的作者。对于这5个新的估测器,我们的估测器比基本内核法和Tenreiro(2013年)的边界修正版等传统方法表现得更好。在本文中,我们采用5个新的不对称内核内核(c.d.f.)的计算器(c.d.f.)来补充他们的研究,我们采用了5个新的不对称内核内核(c.d.d.)的计算器(cum)和内核内核内部核(eural-deal-deal)的计算器,然后用Biral-deal-ral-deal-deal-deal-deal-deal-deal-deal-deal-destral-s.

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
神经网络训练tricks
极市平台
6+阅读 · 2019年4月15日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2017年10月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月20日
Arxiv
0+阅读 · 2021年1月15日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
神经网络训练tricks
极市平台
6+阅读 · 2019年4月15日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2017年10月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员