Uniqueness of the population value of an estimated descriptor is a standard assumption in asymptotic theory. However, m-estimation problems often allow for local minima of the sample estimating function, which may stem from multiple global minima of the underlying population estimating function. In the present article, we provide tools to systematically determine for a given sample whether the underlying population estimating function may have multiple global minima. To achieve this goal, we develop asymptotic theory for non-unique minimizers and introduce asymptotic tests using the bootstrap. We discuss three applications of our tests to data, each of which presents a typical scenario in which non-uniqueness of descriptors may occur. These model scenarios are the mean on a non-euclidean space, non-linear regression and Gaussian mixture clustering.
翻译:估计描述符的人口价值的独特性是无症状理论中的一项标准假设。然而,对抽样估计功能的估测问题往往允许在当地进行抽样估计功能的微小,这可能源于基础人口估计功能的多重全球微小。在本条中,我们提供工具,系统确定某一抽样是否潜在的人口估计功能可能具有多重全球微小。为实现这一目标,我们为非单一最小化器开发了无症状理论,并采用靴子进行无症状测试。我们讨论了我们数据测试的三种应用,其中每一种都呈现出非典型描述符可能发生的典型情景。这些模型情景是非优氏空间、非线性回归和高氏混合组合的平均值。