We present a framework for learning probability distributions on topologically non-trivial manifolds, utilizing normalizing flows. Current methods focus on manifolds that are homeomorphic to Euclidean space, enforce strong structural priors on the learned models or use operations that do not easily scale to high dimensions. In contrast, our method learns distributions on a data manifold by "gluing" together multiple local models, thus defining an open cover of the data manifold. We demonstrate the efficiency of our approach on synthetic data of known manifolds, as well as higher dimensional manifolds of unknown topology, where our method exhibits better sample efficiency and competitive or superior performance against baselines in a number of tasks.


翻译:我们提出了一个框架,用于利用正常流流来学习在地形学上非三元元的概率分布; 目前的方法侧重于在欧clidean空间具有地貌特征的元件,对学习的模型或使用不易推广到高度的操作实施强有力的结构前科; 相反,我们的方法通过“融合”多个本地模型来学习数据多元分布,从而界定了数据多元的公开覆盖。 我们展示了我们对已知的元件合成数据以及未知地貌高维元数据的方法的效率,我们的方法在一系列任务的基线上展示了更好的样本效率和竞争性或优异性。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员