The task of image segmentation is to classify each pixel in the image based on the appropriate label. Various deep learning approaches have been proposed for image segmentation that offers high accuracy and deep architecture. However, the deep learning technique uses a pixel-wise loss function for the training process. Using pixel-wise loss neglected the pixel neighbor relationships in the network learning process. The neighboring relationship of the pixels is essential information in the image. Utilizing neighboring pixel information provides an advantage over using only pixel-to-pixel information. This study presents regularizers to give the pixel neighbor relationship information to the learning process. The regularizers are constructed by the graph theory approach and topology approach: By graph theory approach, graph Laplacian is used to utilize the smoothness of segmented images based on output images and ground-truth images. By topology approach, Euler characteristic is used to identify and minimize the number of isolated objects on segmented images. Experiments show that our scheme successfully captures pixel neighbor relations and improves the performance of the convolutional neural network better than the baseline without a regularization term.
翻译:图像分割的任务是根据合适的标签对图像中的每个像素进行分类。 已经为图像分割提出了各种深层次学习方法, 提供高精度和深层结构。 但是, 深层次学习技术在培训过程中使用了像素丢失功能。 使用像素丢失忽略了网络学习过程中的像素邻居关系。 像素的相邻关系是图像中必不可少的信息。 利用相邻像素信息提供了优势, 而不是只使用像素到像素信息。 本研究展示了将像素邻居关系信息提供给学习过程的调整器。 调整器是用图形理论方法和表层学方法构建的: 使用图形理论方法, 图形拉方cian 来利用基于输出图像和地面图象的片断图像的平滑性。 从表层学角度看, 使用Euler 特性来识别和最小化断段图像上的孤立对象的数量。 实验显示, 我们的计划成功地捕捉到像素邻居关系, 并改进了同层神经网络的性能, 而不是基准状态。