Suppose we wish to predict the behaviour of a physical system. We may choose to represent the system by model structure $S$ (a set of related mathematical models defined by parametric relationships between system variables), and a parameter set $\Theta$. Each parameter vector in $\Theta$ is associated with a completely specified model in $S$. We use $S$ with system observations in estimating the "true" (unknown) parameter vector. Inconveniently, multiple parameter vectors may cause $S$ to approximate the data equally well. If we cannot distinguish between such alternatives, and these lead to dissimilar predictions, we cannot confidently use $S$ in decision making. This result may render efforts in data collection and modelling fruitless. This outcome occurs when $S$ lacks the property of structural global identifiability (SGI). Fortunately, we can test various classes of structures for SGI prior to data collection. A non-SGI result may guide changes to our structure or experimental design towards obtaining a better outcome. We aim to assist the testing of structures for SGI through bespoke Maple 2020 procedures. We consider continuous-time, uncontrolled, linear time-invariant state-space structures. Here, the time evolution of the state-variable vector ${\bf x}$ is modelled by a system of constant-coefficient, ordinary differential equations. We utilise the "transfer function" approach, which is also applicable to the "compartmental" subclass (mass is conserved). Our use of Maple's "Explore" enables an interactive consideration of a parent structure and its variants, obtained as the user changes which components of ${\bf x}$ are observed, or have non-zero initial conditions. Such changes may influence the information content of the idealised output available for the SGI test, and hence, its result. Our approach may inform the interactive analysis of structures from other classes.
翻译:假设我们想要预测物理系统的行为。 我们可能选择以模型结构 $S 来代表系统。 我们可能选择以模型结构 $S (一组由系统变量之间的参数关系来定义的相关数学模型) 和参数 $\ theta$ 来代表系统。 $\ theta$中的每个参数矢量都与一个完全指定的模型挂钩 $S$。 我们使用美元与系统观测一起来估算“ 真实的” (未知) 参数矢量。 多参数矢量可能会导致美元对数据同样接近。 如果我们无法区分这些替代品, 并且导致不同的预测, 我们无法自信地在决策中使用 $S$ 。 这样的结果可能会使数据收集和建模的努力没有结果。 幸运的是, 我们可以在数据收集之前测试SGI的各种结构。 一个非SGI结果可以引导我们的结构或实验设计获得更好的结果。 我们的目标是协助SGI结构的测试通过显示的 Maple 2020 程序进行。 我们考虑的是, livertal lialalalalal levelalalal maildal ressal resulation ex ex ex ex exal ex ex ex ex ex ex exal exal ex export routus ex routus ex ex ex exal exmal ex ex ex ex ex routus ex ex ex ex exb ex ex exlutututus routus routus routus ex ex ex ex ex ex ex ex ex exbolver supolb routus routus exbal a ro ro ro exbal a exvalut exal exal exal exal exal exal exal exal exal exal exbalbalbalbal exal exal exal exal exal exal exal exal exmal exmal exal exal exal exal exal exal exal exal exal exal exal-