We study the theoretical properties of random Fourier features classification with Lipschitz continuous loss functions such as support vector machine and logistic regression. Utilizing the regularity condition, we show for the first time that random Fourier features classification can achieve $O(1/\sqrt{n})$ learning rate with only $\Omega(\sqrt{n} \log n)$ features, as opposed to $\Omega(n)$ features suggested by previous results. Our study covers the standard feature sampling method for which we reduce the number of features required, as well as a problem-dependent sampling method which further reduces the number of features while still keeping the optimal generalization property. Moreover, we prove that the random Fourier features classification can obtain a fast $O(1/n)$ learning rate for both sampling schemes under Massart's low noise assumption. Our results demonstrate the potential effectiveness of random Fourier features approximation in reducing the computational complexity (roughly from $O(n^3)$ in time and $O(n^2)$ in space to $O(n^2)$ and $O(n\sqrt{n})$ respectively) without having to trade-off the statistical prediction accuracy. In addition, the achieved trade-off in our analysis is at least the same as the optimal results in the literature under the worst case scenario and significantly improves the optimal results under benign regularity conditions.


翻译:我们用Lipschitz 连续损失函数(如支持矢量机和后勤回归)来研究随机 Fourier 特征分类的理论性质。 利用常规性条件,我们第一次显示随机 Fourier 特征分类仅能达到美元(1/\ sqrt{n}) 的学习率,只有美元( Omega (sqrt{n}\log n) 美元) 的学习率, 而不是以前结果中建议的 $( Omega (n) 美元) 。 我们的研究涵盖了标准特征抽样方法,我们据此减少了所需的特征数量,以及基于问题的抽样方法,进一步减少特征数量,同时保持最佳的通用属性。 此外,我们还证明随机的 Fourier 特征分类在Massart 低噪音假设下, 两种采样方案都能获得快速( 1/ n) 美元( 美元) 的学习率。 我们的研究结果表明,随机的Fourier 特征近似在降低计算复杂性( 美元( 美元(n3美元) ) 和 美元 美元 ( 美元) 美元(n2美元) 美元(n) 美元) 美元( 美元) 美元) 。 我们的太空中所需的标准抽样抽样抽样抽样抽样方法方法方法, 进一步减少特征数量数量数量数量数量数量数量数量数量, 和, 但仍保持最佳贸易结果 。

0
下载
关闭预览

相关内容

专知会员服务
21+阅读 · 2021年7月31日
专知会员服务
141+阅读 · 2021年3月17日
专知会员服务
50+阅读 · 2020年12月14日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
谷歌足球游戏环境使用介绍
CreateAMind
32+阅读 · 2019年6月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月11日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
谷歌足球游戏环境使用介绍
CreateAMind
32+阅读 · 2019年6月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员