It is well-known that cohomology has a richer structure than homology. However, so far, in practice, the use of cohomology in persistence setting has been limited to speeding up of barcode computations. Two recently introduced invariants, namely, persistent cup-length and persistent Steenrod modules, to some extent, fill this gap. When added to the standard persistence barcode, they lead to invariants that are more discriminative than the standard persistence barcode. In this work, we introduce (the persistent variants of) the order-$k$ cup product modules, which are images of maps from the $k$-fold tensor products of the cohomology vector space of a complex to the cohomology vector space of the complex itself. We devise an $O(d n^4)$ algorithm for computing the order-$k$ cup product persistent modules for all $k \in \{2, \dots, d\}$, where $d$ denotes the dimension of the filtered complex, and $n$ denotes its size. Furthermore, we show that these modules are stable for Cech and Rips filtrations. Finally, we note that the persistent cup length can be obtained as a byproduct of our computations leading to a significantly faster algorithm for computing it.
翻译:众所周知,同族体的结构比同族体更为丰富,然而,迄今为止,在实际中,在持久性环境中使用同族体的方法只限于加速条形码计算。最近引入了两种异同元素,即持久性杯长和持久性Steenrod模块,在某种程度上填补了这一空白。在标准持久性条形码中,它们导致差异性比标准持久性条形码更强。在这项工作中,我们引入了(长期变方)定价-美元杯产品模块,这是从复合体的同族体矢量空间的合金倍数成的成像到复合体的同族矢量空间本身的共振幅。我们设计了一个美元(d n+4)的算法,用于计算按定价-k美元制杯子产品的持久性模块,所有美元=2,\dots, d ⁇,其中美元表示过滤器复合体的尺寸,而美元则表示其大小。此外,我们展示这些模块最终会稳定地以C-chmal 和Chardecal 方式计算成一个稳定的计算,最后,通过持续式的计算方法可以稳定地制成。