We consider the problem of decoding corrupted error correcting codes with NC$^0[\oplus]$ circuits in the classical and quantum settings. We show that any such classical circuit can correctly recover only a vanishingly small fraction of messages, if the codewords are sent over a noisy channel with positive error rate. Previously this was known only for linear codes with non-trivial dual distance, whereas our result applies to any code. By contrast, we give a simple quantum circuit that correctly decodes the Hadamard code with probability $\Omega(\varepsilon^2)$ even if a $(1/2 - \varepsilon)$-fraction of a codeword is adversarially corrupted. Our classical hardness result is based on an equidistribution phenomenon for multivariate polynomials over a finite field under biased input-distributions. This is proved using a structure-versus-randomness strategy based on a new notion of rank for high-dimensional polynomial maps that may be of independent interest. Our quantum circuit is inspired by a non-local version of the Bernstein-Vazirani problem, a technique to generate "poor man's cat states" by Watts et al., and a constant-depth quantum circuit for the OR function by Takahashi and Tani.
翻译:我们考虑了在古典和量子设置中用NC$0[oplus]$的电路解码腐败错误校正代码的问题。 我们显示, 任何古典电路都只能正确恢复一小部分消失的电文, 如果代码词被发送在一个噪音的频道上, 且有正误率。 以前, 仅以线性代码以非三边双距离来知道, 而我们的结果适用于任何代码。 相反, 我们给出一个简单的量子电路, 正确解码哈达马德代码, 概率为$\Omega(\varepsilon)2$( varepsilon) $。 我们的量子电路受到非本地版本的对代码的反弹性腐蚀。 我们典型的硬性结果是基于在有偏差的输入分布下, 对一个有限的字段的多式多元性分配现象, 而我们的结果则适用于任何代码。 我们用一个结构- 反随机的策略来正确解码战略, 以可能具有独立兴趣的高级多式多式地图的等级概念为基础。 我们的量子电路由非本地版本的“ ” 由斯坦- 和卡- 电流技术产生一个非本地的“ 塔坦坦坦- ” 。