The emergence of massive ultra-reliable and low latency communications (mURLLC) as a category of time/reliability-sensitive service over 6G networks has received considerable research attention, which has presented unprecedented challenges. As one of the key enablers for 6G, satellite-terrestrial integrated networks (STIN) have been developed to offer more expansive connectivity and comprehensive 3D coverage in space-aerial-terrestrial domains for supporting 6G mission-critical mURLLC applications while fulfilling diverse and rigorous quality of service (QoS) requirements. In the context of these mURLLC-driven satellite services, data freshness assumes paramount importance, as outdated data may engender unpredictable or catastrophic outcomes. To effectively measure data freshness in satellite-terrestrial integrated communications, age of information (AoI) has recently surfaced as a new dimension of QoS metric to support time-sensitive applications. It is crucial to design new analytical models that ensure stringent and diverse QoS metrics bounded by different key parameters, including AoI, delay, and reliability, over 6G satellite-terrestrial integrated networks. However, due to the complicated and dynamic nature of satellite-terrestrial integrated network environments, the research on efficiently defining new statistical QoS schemes while taking into account varying degrees of freedom has still been in their infancy. To remedy these deficiencies, in this paper we develop statistical QoS provisioning schemes over 6G satellite-terrestrial integrated networks in the finite blocklength regime. Particularly, we firstly introduce and review key technologies for supporting mURLLC. Secondly, we formulate a number of novel fundamental statistical-QoS metrics in the finite blocklength regime. Finally, we conduct a set of simulations to evaluate our developed statistical QoS schemes.
翻译:暂无翻译