Learning nonparametric systems of Ordinary Differential Equations (ODEs) dot x = f(t,x) from noisy data is an emerging machine learning topic. We use the well-developed theory of Reproducing Kernel Hilbert Spaces (RKHS) to define candidates for f for which the solution of the ODE exists and is unique. Learning f consists of solving a constrained optimization problem in an RKHS. We propose a penalty method that iteratively uses the Representer theorem and Euler approximations to provide a numerical solution. We prove a generalization bound for the L2 distance between x and its estimator and provide experimental comparisons with the state-of-the-art.
翻译:从噪音数据中学习普通差异分数的非参数系统(ODEs) dot x = f(t,x) = f(t,x) 噪音数据是一个新兴的机器学习主题。 我们使用成熟的复制 Kernel Hilbert 空间理论(RKHS) 来定义存在和独特的ODE解决方案的f 候选系统。 学习f 包括解决 RKHS 中的限制优化问题。 我们建议一种惩罚方法, 迭接地使用代言词和 Euler 近似来提供数字解决方案。 我们证明, 一种通用化, 将x 与其测算器之间的 L2 距离连接起来, 并提供与最新技术的实验性比较 。