Given $n$ elements, an integer $k$ and a parameter $\varepsilon$, we study to select an element with rank in $(k-n\varepsilon,k+n\varepsilon]$ using unreliable comparisons where the outcome of each comparison is incorrect independently with a constant error probability, and multiple comparisons between the same pair of elements are independent. In this fault model, the fundamental problems of finding the minimum, selecting the $k$-th smallest element and sorting have been shown to require $\Theta\big(n \log \frac{1}{Q}\big)$, $\Theta\big(n\log \frac{\min\{k,n-k\}}{Q}\big)$ and $\Theta\big(n\log \frac{n}{Q}\big)$ comparisons, respectively, to achieve success probability $1-Q$. Recently, Leucci and Liu proved that the approximate minimum selection problem ($k=0$) requires expected $\Theta(\varepsilon^{-1}\log \frac{1}{Q})$ comparisons. We develop a randomized algorithm that performs expected $O(\frac{k}{n}\varepsilon^{-2} \log \frac{1}{Q})$ comparisons to achieve success probability at least $1-Q$. We also prove that any randomized algorithm with success probability at least $1-Q$ performs expected $\Omega(\frac{k}{n}\varepsilon^{-2}\log \frac{1}{Q})$ comparisons. Our results indicate a clear distinction between approximating the minimum and approximating the $k$-th smallest element, which holds even for the high probability guarantee, e.g., if $k=\frac{n}{2}$ and $Q=\frac{1}{n}$, $\Theta(\varepsilon^{-1}\log n)$ versus $\Theta(\varepsilon^{-2}\log n)$. Moreover, if $\varepsilon=n^{-\alpha}$ for $\alpha \in (0,\frac{1}{2})$, the asymptotic difference is almost quadratic, i.e., $\tilde{\Theta}(n^{\alpha})$ versus $\tilde{\Theta}(n^{2\alpha})$.


翻译:考虑到美元元素, 整数 $2 元元和参数 $2 美元, 我们研究如何使用不可靠的比较来选择一个以美元( k- n\ varepsilon, k+n\ varepsilon) 排序值的元素。 在这种错误模型中, 找到最小值、 选择 $- 2 最小值和排序等基本问题, 需要 $( dig) (n) 美元( formi) 美元, 美元(n\ n\ varepsil, kn\ vracesilon) 美元, 美元(n\ vrice) 和 美元(n) 美元(n) 美元(n\ big) 和 美元(n\ c) 美元( morecomm ) 的排序值。 最近, Lecucci 和 Liu 证明, 最起码的选择问题(k) 需要 $(\\ sta( sta) cilsion) 和 美元(lok) 美元(lossional dal) aral dalationsal) lax, 美元(我们也可以(sal) lax) 美元(s) 10) 美元(s) 美元) 美元(c) 或(c) 美元) 美元(c) 美元) 美元) 美元(c) 美元(c) 美元) 美元) 美元(c) 美元(我们(s) 美元) 美元) 。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Depth-based clustering analysis of directional data
Arxiv
0+阅读 · 2022年6月21日
Arxiv
0+阅读 · 2022年6月20日
Arxiv
0+阅读 · 2022年6月19日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员