Neural demyelination and brain damage accumulated in white matter appear as hyperintense areas on MRI scans in the form of lesions. Modeling binary images at the population level, where each voxel represents the existence of a lesion, plays an important role in understanding aging and inflammatory diseases. We propose a scalable hierarchical Bayesian spatial model, called BLESS, capable of handling binary responses by placing continuous spike-and-slab mixture priors on spatially-varying parameters and enforcing spatial dependency on the parameter dictating the amount of sparsity within the probability of inclusion. The use of mean-field variational inference with dynamic posterior exploration, which is an annealing-like strategy that improves optimization, allows our method to scale to large sample sizes. Our method also accounts for underestimation of posterior variance due to variational inference by providing an approximate posterior sampling approach based on Bayesian bootstrap ideas and spike-and-slab priors with random shrinkage targets. Besides accurate uncertainty quantification, this approach is capable of producing novel cluster size based imaging statistics, such as credible intervals of cluster size, and measures of reliability of cluster occurrence. Lastly, we validate our results via simulation studies and an application to the UK Biobank, a large-scale lesion mapping study with a sample size of 40,000 subjects.
翻译:在白物质中累积的神经失密和脑损伤似乎是以损伤形式进行磁共振扫描的高度紧张区域。在人口层面模拟二进制图像,每个 voxel代表了损伤的存在,在理解老化和发炎疾病方面起着重要作用。我们建议了一个可缩放的贝叶西亚等级空间模型,称为BLESS,能够通过在空间变化参数上放置连续的刺杀和悬浮混合前缀,对空间变异参数进行连续的悬浮和悬浮混合前缀处理二进反应,并在空间依赖标定包容概率范围内宽度的参数。在人口层面使用动态的远地点变异推法,这是一种能改善优化的惯性战略,使我们能够将方法的规模缩到大样本大小。我们的方法还说明了由于变异而低估后缀变化的原因,通过提供一种近似的后缀取样方法,以及随机缩缩缩放目标。除了精确的不确定性量化外,这一方法还能够用一种类似于喷射式式的场变异推推推推推法推推推推推推推推法推算法推算法,通过英国的集群规模的甚小比例测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测的甚等等等等的系列等的系列等的系列等的系列等的系列等的系列的系列,从而了英国的群规模。