Baker and Norine initiated the study of graph divisors as a graph-theoretic analogue of the Riemann-Roch theory for Riemann surfaces. One of the key concepts of graph divisor theory is the {\it rank} of a divisor on a graph. The importance of the rank is well illustrated by Baker's {\it Specialization lemma}, stating that the dimension of a linear system can only go up under specialization from curves to graphs, leading to a fruitful interaction between divisors on graphs and curves. Due to its decisive role, determining the rank is a central problem in graph divisor theory. Kiss and T\'othm\'eresz reformulated the problem using chip-firing games, and showed that computing the rank of a divisor on a graph is NP-hard via reduction from the Minimum Feedback Arc Set problem. In this paper, we strengthen their result by establishing a connection between chip-firing games and the Minimum Target Set Selection problem. As a corollary, we show that the rank is difficult to approximate to within a factor of $O(2^{\log^{1-\varepsilon}n})$ for any $\varepsilon > 0$ unless $P=NP$. Furthermore, assuming the Planted Dense Subgraph Conjecture, the rank is difficult to approximate to within a factor of $O(n^{1/4-\varepsilon})$ for any $\varepsilon>0$.


翻译:贝克和 诺琳 开始研究 图形 divisors, 将其作为 Riemann- Roch 对 Riemann 表面的图形理论的图形理论理论理论 。 图形 divisor 理论的关键概念之一是 图形 divisor 的 位阶 。 贝克 的 pretization lemma} 清楚地展示了该等级的重要性, 指出线性系统的维度只能通过从曲线到图表的专业化来提升, 从而在图表和曲线上进行极量的比值互动。 由于它的决定性作用, 确定等级是图形 divisor 理论中的一个中心问题。 基点和 T\\\\\ othm\ eresz 使用芯素游戏重现问题。 并显示, 通过减少最低反馈弧设置问题来计算图的比值是硬的。 本文中, 我们通过在芯游戏和最低目标选择值选择值 。 作为必然, 我们显示该等级很难在 $( 2\\\\\\\\\\\\\\\\\\\ r) ar_ 任何 美元的 折中, 折中, 折值的值内, 折值内值是 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月7日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员