Baker and Norine initiated the study of graph divisors as a graph-theoretic analogue of the Riemann-Roch theory for Riemann surfaces. One of the key concepts of graph divisor theory is the {\it rank} of a divisor on a graph. The importance of the rank is well illustrated by Baker's {\it Specialization lemma}, stating that the dimension of a linear system can only go up under specialization from curves to graphs, leading to a fruitful interaction between divisors on graphs and curves. Due to its decisive role, determining the rank is a central problem in graph divisor theory. Kiss and T\'othm\'eresz reformulated the problem using chip-firing games, and showed that computing the rank of a divisor on a graph is NP-hard via reduction from the Minimum Feedback Arc Set problem. In this paper, we strengthen their result by establishing a connection between chip-firing games and the Minimum Target Set Selection problem. As a corollary, we show that the rank is difficult to approximate to within a factor of $O(2^{\log^{1-\varepsilon}n})$ for any $\varepsilon > 0$ unless $P=NP$. Furthermore, assuming the Planted Dense Subgraph Conjecture, the rank is difficult to approximate to within a factor of $O(n^{1/4-\varepsilon})$ for any $\varepsilon>0$.
翻译:贝克和 诺琳 开始研究 图形 divisors, 将其作为 Riemann- Roch 对 Riemann 表面的图形理论的图形理论理论理论 。 图形 divisor 理论的关键概念之一是 图形 divisor 的 位阶 。 贝克 的 pretization lemma} 清楚地展示了该等级的重要性, 指出线性系统的维度只能通过从曲线到图表的专业化来提升, 从而在图表和曲线上进行极量的比值互动。 由于它的决定性作用, 确定等级是图形 divisor 理论中的一个中心问题。 基点和 T\\\\\ othm\ eresz 使用芯素游戏重现问题。 并显示, 通过减少最低反馈弧设置问题来计算图的比值是硬的。 本文中, 我们通过在芯游戏和最低目标选择值选择值 。 作为必然, 我们显示该等级很难在 $( 2\\\\\\\\\\\\\\\\\\\ r) ar_ 任何 美元的 折中, 折中, 折值的值内, 折值内值是 。