We study two generalizations of classic clustering problems called dynamic ordered $k$-median and dynamic $k$-supplier, where the points that need clustering evolve over time, and we are allowed to move the cluster centers between consecutive time steps. In these dynamic clustering problems, the general goal is to minimize certain combinations of the service cost of points and the movement cost of centers, or to minimize one subject to some constraints on the other. We obtain a constant-factor approximation algorithm for dynamic ordered $k$-median under mild assumptions on the input. We give a 3-approximation for dynamic $k$-supplier and a multi-criteria approximation for its outlier version where some points can be discarded, when the number of time steps is two. We complement the algorithms with almost matching hardness results.
翻译:我们研究了两个典型集群问题的一般情况,即动态订购中值美元和动态供应方美元,其中需要集群的点随着时间的推移而变化,我们获准在连续的时间步骤之间移动集群中心。在这些动态集群问题中,总的目标是最大限度地减少点服务成本和中心移动成本的某些组合,或尽量减少一个中心运行成本的组合,但另一中心受到一些限制。我们在输入的轻度假设下,为动态订购中值美元获得一个恒定要素近似算法。我们给动态供应商提供3倍的准差,给其外端版本提供多标准近似值,当时间步骤的数量为2时,可以抛弃其中的某些点。我们用几乎与硬性结果相匹配的算法来补充这些算法。