This paper considers a natural fault-tolerant shortest paths problem: for some constant integer $f$, given a directed weighted graph with no negative cycles and two fixed vertices $s$ and $t$, compute (either explicitly or implicitly) for every tuple of $f$ edges, the distance from $s$ to $t$ if these edges fail. We call this problem $f$-Fault Replacement Paths ($f$FRP). We first present an $\tilde{O}(n^3)$ time algorithm for $2$FRP in $n$-vertex directed graphs with arbitrary edge weights and no negative cycles. As $2$FRP is a generalization of the well-studied Replacement Paths problem (RP) that asks for the distances between $s$ and $t$ for any single edge failure, $2$FRP is at least as hard as RP. Since RP in graphs with arbitrary weights is equivalent in a fine-grained sense to All-Pairs Shortest Paths (APSP) [Vassilevska Williams and Williams FOCS'10, J.~ACM'18], $2$FRP is at least as hard as APSP, and thus a substantially subcubic time algorithm in the number of vertices for $2$FRP would be a breakthrough. Therefore, our algorithm in $\tilde{O}(n^3)$ time is conditionally nearly optimal. Our algorithm implies an $\tilde{O}(n^{f+1})$ time algorithm for the $f$FRP problem, giving the first improvement over the straightforward $O(n^{f+2})$ time algorithm. Then we focus on the restriction of $2$FRP to graphs with small integer weights bounded by $M$ in absolute values. Using fast rectangular matrix multiplication, we obtain a randomized algorithm that runs in $\tilde{O}(M^{2/3}n^{2.9153})$ time. This implies an improvement over our $\tilde{O}(n^{f+1})$ time arbitrary weight algorithm for all $f>1$. We also present a data structure variant of the algorithm that can trade off pre-processing and query time. In addition to the algebraic algorithms, we also give an $n^{8/3-o(1)}$ conditional lower bound for combinatorial $2$FRP algorithms in directed unweighted graphs.


翻译:本文认为存在一个自然的错误容忍性最短路径问题:对于某些固定整数 {formax}{formical $53{n3}美元时间算法,考虑到一个直接的加权图表,没有负周期,两个固定的螺旋美元和美元美元,计算(明确或隐含地)每张美元边缘图,从美元到美元,如果这些边缘失效,从美元到美元之间的距离。我们把这个问题称为美元与美元之间的替换路径(ffFR)(fR)(fR)(fR)(fRP) 。我们首先用美元(n) 平面图显示$2美元,没有负周期。由于$2FRP(美元) 直径直线的计算法程程程程程程程程程程程程程程程程程程程程程程程程程 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员