We propose a family of four-parameter distributions that contain the K-distribution as special case. The family is derived as a mixture distribution that uses the three-parameter reflected Gamma distribution as parental and the two-parameter Gamma distribution as prior. Properties of the proposed family are investigated as well; these include probability density function, cumulative distribution function, moments, and cumulants. The family is termed symmetric K-distribution (SKD) based on its resemblance to the K-distribution as well as its symmetric nature. The standard form of the SKD, which often proves to be an adequate model, is also discussed. Moreover, an order statistics analysis is provided as well as the distributions of the product and ratio of two independent and identical SKD random variables are derived. Finally, a generalisation of the proposed family, which enables non-zero skewness values, is investigated, while both the SKD and the skew-SKD are proven capable of describing the complex dynamics of machine learning, Bayesian analysis and other fields through simplified expressions with high accuracy.


翻译:我们作为特例提出一个四参数分布式家庭,其中含有K分布式。家庭作为混合分布式分配式,使用三参数反映Gamma分布式作为亲父母,用两参数分配式分配式作为双参数。还调查了拟议家庭的属性;其中包括概率密度功能、累积分布式功能、瞬间和蓄积体。家庭根据其与K分布式的相似性及其对称性质被称为对称K分布式分配式(SKD)。还讨论了SKD的标准形式,该标准形式往往证明是一个适当的模型。此外,还提供了订单统计分析,以及产品分布和两个独立和相同的SKD随机变量的比率。最后,对拟议家庭进行了概括性调查,使非零微宽度值成为可能,而SKD和Skew-SKD已证明能够通过高度准确的简化表达方式描述机器学习、Bayesian分析和其他领域的复杂动态。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
77+阅读 · 2021年1月25日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月7日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
77+阅读 · 2021年1月25日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员