Sesqui-pushout (SqPO) rewriting along non-linear rules and for monic matches is well-known to permit the modeling of fusing and cloning of vertices and edges, yet to date, no construction of a suitable concurrency theorem was available. The lack of such a theorem, in turn, rendered compositional reasoning for such rewriting systems largely infeasible. We develop in this paper a suitable concurrency theorem for non-linear SqPO-rewriting in categories that are quasi-topoi (subsuming the example of adhesive categories) and with matches required to be regular monomorphisms of the given category. Our construction reveals an interesting "backpropagation effect" in computing rule compositions. We derive in addition a concurrency theorem for non-linear double pushout (DPO) rewriting in rm-adhesive categories. Our results open non-linear SqPO and DPO semantics to the rich static analysis techniques available from concurrency, rule algebra and tracelet theory.
翻译:以非线性规则重写( SqPO), 并重写非线性规则以及单词比对, 这是众所周知的, 以允许对脊椎和边缘的引信和克隆进行模型化和克隆为模式, 但迄今为止, 还没有建造合适的共通理论。 缺乏这样一个理论, 反过来又使这种重写系统的构式推理大不可行。 我们在本文件中为非线性 SqPO- recripy 类( 分录适应性类别的例子), 并且匹配必须是特定类别的常规单一形态。 我们的构造在计算规则构成中显示出一个有趣的“ 后推法效应 ” 。 我们从一个非线性双推法( DPO) 重新写成正感性类别。 我们的结果是打开非线性 SqPO 和 DPO 的精度分析技术, 用于从调制式、 规则代数和 跟踪理论中可以找到的丰富静态分析技术 。