We prove a new Burkholder-Rosenthal type inequality for discrete-time processes taking values in a 2-smooth Banach space. As a first application we prove that if $(S(t,s))_{0\leq s\leq T}$ is a $C_0$-evolution family of contractions on a $2$-smooth Banach space $X$ and $(W_t)_{t\in [0,T]}$ is a cylindrical Brownian motion on a probability space $(\Omega,P)$, then for every $0<p<\infty$ there exists a constant $C_{p,X}$ such that for all progressively measurable processes $g: [0,T]\times \Omega\to X$ the process $(\int_0^t S(t,s)g_sdW_s)_{t\in [0,T]}$ has a continuous modification and $$E\sup_{t\in [0,T]}\Big\| \int_0^t S(t,s)g_sdW_s \Big\|^p\leq C_{p,X}^p \mathbb{E} \Bigl(\int_0^T \| g_t\|^2_{\gamma(H,X)}dt\Bigr)^{p/2}.$$ Moreover, for $2\leq p<\infty$ one may take $C_{p,X} = 10 D \sqrt{p},$ where $D$ is the constant in the definition of $2$-smoothness for $X$. Our result improves and unifies several existing maximal estimates and is even new in case $X$ is a Hilbert space. Similar results are obtained if the driving martingale $g_tdW_t$ is replaced by more general $X$-valued martingales $dM_t$. Moreover, our methods allow for random evolution systems, a setting which appears to be completely new as far as maximal inequalities are concerned. As a second application, for a large class of time discretisation schemes we obtain stability and pathwise uniform convergence of time discretisation schemes for solutions of linear SPDEs $$ du_t = A(t)u_tdt + g_tdW_t, \quad u_0 = 0,$$ Under spatial smoothness assumptions on the inhomogeneity $g$, contractivity is not needed and explicit decay rates are obtained. In the parabolic setting this sharpens several know estimates in the literature; beyond the parabolic setting this seems to provide the first systematic approach to pathwise uniform convergence to time discretisation schemes.
翻译:我们证明在 2 moth Banach 的空格中, 离散时间进程是一个新的 ExlientStencils- Rothhal 类型的不平等。 作为第一个应用, 我们证明如果$( t, s) =0\leq s\leq T} 美元是 $C_ 0mo$- 递缩在$ smoth Banach 空间上 $X美元和 $( t) t} 美元是一个随机的 Brown 运动, 概率空间( \ Omega, P) $, 那么每 美元( p) 美元, 那么, 美元( t) 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元,