Let A be an idempotent algebra on a finite domain. By mediating between results of Chen and Zhuk, we argue that if A satisfies the polynomially generated powers property (PGP) and B is a constraint language invariant under A (that is, in Inv(A)), then QCSP(B) is in NP. In doing this we study the special forms of PGP, switchability and collapsibility, in detail, both algebraically and logically, addressing various questions such as decidability on the way. We then prove a complexity-theoretic converse in the case of infinite constraint languages encoded in propositional logic, that if Inv(A) satisfies the exponentially generated powers property (EGP), then QCSP(Inv(A)) is co-NP-hard. Since Zhuk proved that only PGP and EGP are possible, we derive a full dichotomy for the QCSP, justifying what we term the Revised Chen Conjecture. This result becomes more significant now the original Chen Conjecture is known to be false. Switchability was introduced by Chen as a generalisation of the already-known collapsibility. For three-element domain algebras A that are switchable and omit a G-set, we prove that, for every finite subset D of Inv(A), Pol(D) is collapsible. The significance of this is that, for QCSP on finite structures (over a three-element domain), all QCSP tractability (in P) explained by switchability is already explained by collapsibility.


翻译:在有限的域中, A 应该是一无能的代数。 通过在 Chen 和 Zhuk 的结果之间进行调和, 我们论证说, 如果 A 满足 多元制生成的权力属性( PGP) 和 B 是 A ( Inv( A) ) 下的一种限制语言, 那么 QCSP( B) 是在 NP 中。 我们在此过程中详细研究 PGP 的特殊形式、 可互换性和可互换性, 包括代数和逻辑两方面, 解决了各种问题, 比如在路上的变异性。 然后我们证明, 在无限制式限制语言中, 以推式逻辑编码的 和 B (PGP) 中, 如果 A (A) 满足 指数性生成的权力属性( EGP( Iv( A) ), 那么 QC ( Inv( A) ) 是共同- NPGP( ) 。 因为 Zhuk 证明, 只有 PGP 和 EGP 是可能的特性, 我们为QSP, 的直径直径直径,, 我们称 Chen 的 Chen Conturn- 直径解释为C 。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Learning for Constrained Utility Maximisation
Arxiv
0+阅读 · 2021年8月27日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
相关VIP内容
专知会员服务
90+阅读 · 2021年6月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员