Let A be an idempotent algebra on a finite domain. By mediating between results of Chen and Zhuk, we argue that if A satisfies the polynomially generated powers property (PGP) and B is a constraint language invariant under A (that is, in Inv(A)), then QCSP(B) is in NP. In doing this we study the special forms of PGP, switchability and collapsibility, in detail, both algebraically and logically, addressing various questions such as decidability on the way. We then prove a complexity-theoretic converse in the case of infinite constraint languages encoded in propositional logic, that if Inv(A) satisfies the exponentially generated powers property (EGP), then QCSP(Inv(A)) is co-NP-hard. Since Zhuk proved that only PGP and EGP are possible, we derive a full dichotomy for the QCSP, justifying what we term the Revised Chen Conjecture. This result becomes more significant now the original Chen Conjecture is known to be false. Switchability was introduced by Chen as a generalisation of the already-known collapsibility. For three-element domain algebras A that are switchable and omit a G-set, we prove that, for every finite subset D of Inv(A), Pol(D) is collapsible. The significance of this is that, for QCSP on finite structures (over a three-element domain), all QCSP tractability (in P) explained by switchability is already explained by collapsibility.
翻译:在有限的域中, A 应该是一无能的代数。 通过在 Chen 和 Zhuk 的结果之间进行调和, 我们论证说, 如果 A 满足 多元制生成的权力属性( PGP) 和 B 是 A ( Inv( A) ) 下的一种限制语言, 那么 QCSP( B) 是在 NP 中。 我们在此过程中详细研究 PGP 的特殊形式、 可互换性和可互换性, 包括代数和逻辑两方面, 解决了各种问题, 比如在路上的变异性。 然后我们证明, 在无限制式限制语言中, 以推式逻辑编码的 和 B (PGP) 中, 如果 A (A) 满足 指数性生成的权力属性( EGP( Iv( A) ), 那么 QC ( Inv( A) ) 是共同- NPGP( ) 。 因为 Zhuk 证明, 只有 PGP 和 EGP 是可能的特性, 我们为QSP, 的直径直径直径,, 我们称 Chen 的 Chen Conturn- 直径解释为C 。