Bernstein estimators are well-known to avoid the boundary bias problem of traditional kernel estimators. The theoretical properties of these estimators have been studied extensively on compact intervals and hypercubes, but never on the simplex, except for the mean squared error of the density estimator in Tenbusch (1994) when $d = 2$. The simplex is an important case as it is the natural domain of compositional data. In this paper, we make an effort to prove several asymptotic results (bias, variance, mean squared error (MSE), mean integrated squared error (MISE), asymptotic normality, uniform strong consistency) for Bernstein estimators of cumulative distribution functions and density functions on the $d$-dimensional simplex. Our results generalize the ones in Leblanc (2012) and Babu et al. (2002), who treated the case $d = 1$, and significantly extend those found in Tenbusch (1994). In particular, our rates of convergence for the MSE and MISE are optimal.


翻译:Bernstein估计器是为了避免传统内核估测器的边界偏差问题而众所周知的。这些估计器的理论特性已经在紧凑间隔和超立方体上进行了广泛研究,但从未在简单轴上进行过研究,但Tenbusch(1994年)密度估计器密度估计器的平均平方误差除外,当时美元=2美元。简单x是一个重要的案例,因为它是组成数据的自然领域。在本文中,我们努力证明一些无足轻重的结果(比例、差异、平均平方差(MSE)、平均合并方形差(MISE)、平均平方差(MSE)、平均平方差常态、统一一致的一致性)适用于Bernstein(Bernstein)的累积分布函数和密度函数估计器在美元-维度简单轴上的一致性。我们的结果概括了Leblanc(2012年)和Babu等人(2002年)处理案件的结果,因为前者处理的是美元=1美元,大大扩展了Tenbusch(1994年)中发现的结果。特别是,我们对MSE和MISE的趋同率的最佳比率。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
61+阅读 · 2020年3月4日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
0+阅读 · 2021年8月26日
Arxiv
0+阅读 · 2021年8月25日
VIP会员
相关VIP内容
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
61+阅读 · 2020年3月4日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员