Bernstein estimators are well-known to avoid the boundary bias problem of traditional kernel estimators. The theoretical properties of these estimators have been studied extensively on compact intervals and hypercubes, but never on the simplex, except for the mean squared error of the density estimator in Tenbusch (1994) when $d = 2$. The simplex is an important case as it is the natural domain of compositional data. In this paper, we make an effort to prove several asymptotic results (bias, variance, mean squared error (MSE), mean integrated squared error (MISE), asymptotic normality, uniform strong consistency) for Bernstein estimators of cumulative distribution functions and density functions on the $d$-dimensional simplex. Our results generalize the ones in Leblanc (2012) and Babu et al. (2002), who treated the case $d = 1$, and significantly extend those found in Tenbusch (1994). In particular, our rates of convergence for the MSE and MISE are optimal.
翻译:Bernstein估计器是为了避免传统内核估测器的边界偏差问题而众所周知的。这些估计器的理论特性已经在紧凑间隔和超立方体上进行了广泛研究,但从未在简单轴上进行过研究,但Tenbusch(1994年)密度估计器密度估计器的平均平方误差除外,当时美元=2美元。简单x是一个重要的案例,因为它是组成数据的自然领域。在本文中,我们努力证明一些无足轻重的结果(比例、差异、平均平方差(MSE)、平均合并方形差(MISE)、平均平方差(MSE)、平均平方差常态、统一一致的一致性)适用于Bernstein(Bernstein)的累积分布函数和密度函数估计器在美元-维度简单轴上的一致性。我们的结果概括了Leblanc(2012年)和Babu等人(2002年)处理案件的结果,因为前者处理的是美元=1美元,大大扩展了Tenbusch(1994年)中发现的结果。特别是,我们对MSE和MISE的趋同率的最佳比率。