The discrete Cheeger inequality, due to Alon and Milman (J. Comb. Theory Series B 1985), is an indispensable tool for converting the combinatorial condition of graph expansion to an algebraic condition on the eigenvalues of the graph adjacency matrix. We prove a generalization of Cheeger's inequality, giving an algebraic condition equivalent to small set expansion. This algebraic condition is the p-to-q hypercontractivity of the top eigenspace for the graph adjacency matrix. Our result generalizes a theorem of Barak et al (STOC 2021) to the low small set expansion regime, and has a dramatically simpler proof; this answers a question of Barak (2014).
翻译:小集合扩展的Cheeger不等式
翻译后的摘要:
本文的目的是给出小集合扩展问题的Cheeger不等式的推广形式,对于将图扩展的组合条件转换成图邻接矩阵特征值代数条件是一种不可或缺的工具,该推广不等式通过邻接矩阵的前几个特征向量的p到q的高压缩性来给出了一个代数条件,这个条件是刻划图的小集合扩展问题的,本文的贡献是给出了一个比Barak等人(STOC 2021)证明更为简明的证明过程,并解决了Barak(2014)的研究问题。