Proving linear inequalities and identities of Shannon's information measures, possibly with linear constraints on the information measures, is an important problem in information theory. For this purpose, ITIP and other variant algorithms have been developed and implemented, which are all based on solving a linear program (LP). In particular, an identity $f = 0$ is verified by solving two LPs, one for $f \ge 0$ and one for $f \le 0$. In this paper, we develop a set of algorithms that can be implemented by symbolic computation. Based on these algorithms, procedures for verifying linear information inequalities and identities are devised. Compared with LP-based algorithms, our procedures can produce analytical proofs that are both human-verifiable and free of numerical errors. Our procedures are also more efficient computationally. For constrained inequalities, by taking advantage of the algebraic structure of the problem, the size of the LP that needs to be solved can be significantly reduced. For identities, instead of solving two LPs, the identity can be verified directly with very little computation.


翻译:证明香农信息措施的线性不平等和特征,可能对信息措施有线性限制,这是信息理论中的一个重要问题。为此目的,已经制定和实施了ITIP和其他变式算法,这些算法都基于解决线性程序(LP ) 。特别是,一个身份=0美元,通过解决两个LP来核实,一个为美元/日元/日元/日元,另一个为美元/日元/日元/日元/日元/日元/日元/日元。在本文件中,我们开发了一套可以通过象征性计算执行的算法。根据这些算法,制定了核实线性信息不平等和身份的程序。与基于LP 的算法相比,我们的程序可以产生分析证据,既可以人核查,也可以没有数字错误。我们的程序也是更有效率的计算。由于利用问题的代数结构,需要解决的LP的规模可以大大缩小。对于身份,而不是解决两个LP,可以直接用很少的计算来验证身份。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【硬核书】矩阵代数基础,248页pdf
专知
12+阅读 · 2021年12月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
22+阅读 · 2021年12月19日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【硬核书】矩阵代数基础,248页pdf
专知
12+阅读 · 2021年12月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员