In this paper, we revisit the nonoverlapping domain decomposition methods for solving elliptic problems with high contrast coefficients. Some interesting results are discovered. We find that the Dirichlet-Neumann algorithm and Robin-Robin algorithms may make full use of the ratio of coefficients. Actually, in the case of two subdomains, we show that their convergence rates are $O(\epsilon)$, if $\nu_1\ll\nu_2$, where $\epsilon = \nu_1/\nu_2$ and $\nu_1,\nu_2$ are coefficients of two subdomains. Moreover, in the case of many subdomains, the condition number bounds of Dirichlet-Neumann algorithm and Robin-Robin algorithm are $1+\epsilon(1+\log(H/h))^2$ and $C+\epsilon(1+\log(H/h))^2$, respectively, where $\epsilon$ may be a very small number in the high contrast coefficients case. Besides, the convergence behaviours of the Neumann-Neumann algorithm and Dirichlet-Dirichlet algorithm may be independent of coefficients while they could not benefit from the discontinuous coefficients. Numerical experiments are preformed to confirm our theoretical findings.
翻译:在本文中,我们重新审视了用高对比系数解决椭圆形问题的不重叠域分解方法。 发现了一些有趣的结果。 我们发现Drichlet- Neumann算法和Robin- Robin算法可能充分利用系数比率。 事实上,在两个子域中,我们显示它们的趋同率是$O( epsilon), 如果$__ 1\ll\nu_ 2美元 = nu_ 1/\ nu_ 2美元, 其中美元= nu_ 1/\ nu_ 2美元 和$\ nnu_ 1,\ nu_ 2美元是两个子域系数的系数。 此外, 在许多子域中, Dirichlet- Neumann算法和Robin- Robin算法的条件范围是$1 epsilon(1 ⁇ (H/h)%2美元), 和 $ ecepsilon( 1 ⁇ (H/h)%2美元), 其中, 在高对比系数中, $\ exlon 和 $ $ $_nu_ nu_ nu_ nu_ nu_ nu_ subilmaxl laxal lax lax lax lax lax lax lections recolvations bes recolvolviolviolvolvolvolvolds) 。 此外, 它们molvolvolvolvolvolds 。 。 。 。 。 rvolvolvolvolvolvolvolvolvolvolvolvolvolds 。 。 。 。 。 。 rvolvolvolvolvolvols 。 。 。 rgals rms rvolvolvolvolvolvolvolvolvolvolvolds rvolvolds可能 rvols 。 。 rvols 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,