In this work we derive a posteriori error estimates for the convection-diffusion-reaction equation coupled with the Darcy-Forchheimer problem by a nonlinear external source depending on the concentration of the fluid. We introduce the variational formulation associated to the problem, and discretize it by using the finite element method. We prove optimal a posteriori errors with two types of calculable error indicators. The first one is linked to the linearization and the second one to the discretization. Then we find upper and lower error bounds under additional regularity assumptions on the exact solutions. Finally, numerical computations are performed to show the effectiveness of the obtained error indicators.
翻译:在这项工作中,我们根据液体的浓度,通过非线性外部来源,得出对流-扩散-反应方程式的事后误差估计值,加上达西-福切海默问题。我们引入了与问题相关的变式配方,并通过使用有限元素法将其分解。我们用两种可计算误差指标证明后误差是最佳的。第一种是线性误差,第二种是离异性误差。然后,我们根据对确切解决方案的额外规律性假设,发现上下误差界限。最后,进行数字计算以显示获得的误差指标的有效性。