Learning to control complex systems using non-traditional feedback, e.g., in the form of snapshot images, is an important task encountered in diverse domains such as robotics, neuroscience, and biology (cellular systems). In this paper, we present a two neural-network (NN)-based feedback control framework to design control policies for systems that generate feedback in the form of images. In particular, we develop a deep $Q$-network (DQN)-driven learning control strategy to synthesize a sequence of control inputs from snapshot images that encode the information pertaining to the current state and control action of the system. Further, to train the networks we employ a direct error-driven learning (EDL) approach that utilizes a set of linear transformations of the NN training error to update the NN weights in each layer. We verify the efficacy of the proposed control strategy using numerical examples.
翻译:使用非传统反馈(例如,以快照形式)对复杂系统进行控制学习,这是机器人、神经科学和生物学(细胞系统)等不同领域遇到的一项重要任务;在本文件中,我们提出了一个基于神经网络(NN)的反馈控制框架,用于设计以图像形式产生反馈的系统的控制政策;特别是,我们开发了一个由深度Q$-网络(DQN)驱动的学习控制战略,以综合从与系统当前状态和控制行动有关的信息编码的快照中提供的一系列控制投入;此外,我们用直接错误驱动的学习(EDL)方法培训网络,利用NN培训错误的一套线性转换来更新每个层次的NN重量;我们用数字实例来核查拟议的控制战略的有效性。