Extracting parametric edge curves from point clouds is a fundamental problem in 3D vision and geometry processing. Existing approaches mainly rely on keypoint detection, a challenging procedure that tends to generate noisy output, making the subsequent edge extraction error-prone. To address this issue, we propose to directly detect structured edges to circumvent the limitations of the previous point-wise methods. We achieve this goal by presenting NerVE, a novel neural volumetric edge representation that can be easily learned through a volumetric learning framework. NerVE can be seamlessly converted to a versatile piece-wise linear (PWL) curve representation, enabling a unified strategy for learning all types of free-form curves. Furthermore, as NerVE encodes rich structural information, we show that edge extraction based on NerVE can be reduced to a simple graph search problem. After converting NerVE to the PWL representation, parametric curves can be obtained via off-the-shelf spline fitting algorithms. We evaluate our method on the challenging ABC dataset. We show that a simple network based on NerVE can already outperform the previous state-of-the-art methods by a great margin. Project page: https://dongdu3.github.io/projects/2023/NerVE/.
翻译:从点云中提取参数化边缘曲线是三维视觉和几何处理中的一个基本问题。现有的方法主要依赖于关键点检测,这是一个具有挑战性的过程,容易产生噪声输出,从而使随后的边缘提取容易出错。为了解决这个问题,我们提出了直接检测结构边缘的方法,以规避以前点对点的方法的局限性。我们通过提出NerVE,一种新颖的神经体积边缘表示,可以通过体积学习框架轻松地进行学习。NerVE可以被顺利转换为多功能的分段线性(PWL)曲线表示,从而使学习所有类型的自由形式曲线的统一策略成为可能。此外,由于NerVE编码了丰富的结构信息,我们表明基于NerVE的边缘提取可以被简化为一个简单的图搜索问题。在将NerVE转换为PWL表示后,可以通过现成的样条拟合算法获得参数化曲线。我们在具有挑战性的ABC数据集上评估了该方法。我们展示了一个基于NerVE的简单网络已经能够大大优于以前的最先进方法。项目主页:https://dongdu3.github.io/projects/2023/NerVE/。