A class of implicit Milstein type methods is introduced and analyzed in the present article for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. By incorporating a pair of method parameters $\theta, \eta \in [0, 1]$ into both the drift and diffusion parts, the new schemes are indeed a kind of drift-diffusion double implicit methods. Within a general framework, we offer upper mean-square error bounds for the proposed schemes, based on certain error terms only getting involved with the exact solution processes. Such error bounds help us to easily analyze mean-square convergence rates of the schemes, without relying on a priori high-order moment estimates of numerical approximations. Putting further globally polynomial growth condition, we successfully recover the expected mean-square convergence rate of order one for the considered schemes with $\theta \in [\tfrac12, 1], \eta \in [0, 1]$. Also, some of the proposed schemes are applied to solve three SDE models evolving in the positive domain $(0, \infty)$. More specifically, the particular drift-diffusion implicit Milstein method ($ \theta = \eta = 1 $) is utilized to approximate the Heston $\tfrac32$-volatility model and the stochastic Lotka-Volterra competition model. The semi-implicit Milstein method ($\theta =1, \eta = 0$) is used to solve the Ait-Sahalia interest rate model. Thanks to the previously obtained error bounds, we reveal the optimal mean-square convergence rate of the positivity preserving schemes under more relaxed conditions, compared with existing relevant results in the literature. Numerical examples are also reported to confirm the previous findings.
翻译:本文介绍了一类隐式 Milstein 类型方法,用于具有非全局 Lipschitz 漂移和扩散系数的随机微分方程(SDE)。通过将方法参数 $\theta, \eta \in [0,1]$ 引入到漂移和扩散部分中,新的方案实际上是一种漂移扩散双重隐式方法。在一个通用框架内,我们基于只涉及确切解过程的某些误差项提供了所提出方案的上限均方误差界限。这种误差界限帮助我们轻松地分析方案的均方收敛速率,而无需依赖于先验的高阶矩估计数值逼近。在进一步引入全局多项式增长条件的情况下,我们成功地恢复了具有 $\theta \in [\tfrac12,1], \eta \in [0,1]$ 的考虑方案的预期均方收敛顺序。此外,一些所提出的方案被应用于解决在正半轴 $(0,\infty)$ 中演化的三个 SDE 模型。更具体地说,采用了特殊的漂移扩散隐式 Milstein 方法($ \theta = \eta = 1 $)来逼近 Heston $\tfrac32$ 波动率模型和随机 Lotka-Volterra 竞争模型。半隐式 Milstein方法($\theta = 1, \eta=0$)用于解决 Ait-Sahalia 利率模型。由于先前获得的误差界限,我们揭示了在相对宽松的条件下对保持正数的方案的最佳均方收敛速率,与文献中现有的相关结果进行了比较。还报告了数值示例以确认先前的研究结果。