A class of implicit Milstein type methods is introduced and analyzed in the present article for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. By incorporating a pair of method parameters $\theta, \eta \in [0, 1]$ into both the drift and diffusion parts, the new schemes are indeed a kind of drift-diffusion double implicit methods. Within a general framework, we offer upper mean-square error bounds for the proposed schemes, based on certain error terms only getting involved with the exact solution processes. Such error bounds help us to easily analyze mean-square convergence rates of the schemes, without relying on a priori high-order moment estimates of numerical approximations. Putting further globally polynomial growth condition, we successfully recover the expected mean-square convergence rate of order one for the considered schemes with $\theta \in [\tfrac12, 1], \eta \in [0, 1]$. Also, some of the proposed schemes are applied to solve three SDE models evolving in the positive domain $(0, \infty)$. More specifically, the particular drift-diffusion implicit Milstein method ($ \theta = \eta = 1 $) is utilized to approximate the Heston $\tfrac32$-volatility model and the stochastic Lotka-Volterra competition model. The semi-implicit Milstein method ($\theta =1, \eta = 0$) is used to solve the Ait-Sahalia interest rate model. Thanks to the previously obtained error bounds, we reveal the optimal mean-square convergence rate of the positivity preserving schemes under more relaxed conditions, compared with existing relevant results in the literature. Numerical examples are also reported to confirm the previous findings.


翻译:本文介绍了一类隐式 Milstein 类型方法,用于具有非全局 Lipschitz 漂移和扩散系数的随机微分方程(SDE)。通过将方法参数 $\theta, \eta \in [0,1]$ 引入到漂移和扩散部分中,新的方案实际上是一种漂移扩散双重隐式方法。在一个通用框架内,我们基于只涉及确切解过程的某些误差项提供了所提出方案的上限均方误差界限。这种误差界限帮助我们轻松地分析方案的均方收敛速率,而无需依赖于先验的高阶矩估计数值逼近。在进一步引入全局多项式增长条件的情况下,我们成功地恢复了具有 $\theta \in [\tfrac12,1], \eta \in [0,1]$ 的考虑方案的预期均方收敛顺序。此外,一些所提出的方案被应用于解决在正半轴 $(0,\infty)$ 中演化的三个 SDE 模型。更具体地说,采用了特殊的漂移扩散隐式 Milstein 方法($ \theta = \eta = 1 $)来逼近 Heston $\tfrac32$ 波动率模型和随机 Lotka-Volterra 竞争模型。半隐式 Milstein方法($\theta = 1, \eta=0$)用于解决 Ait-Sahalia 利率模型。由于先前获得的误差界限,我们揭示了在相对宽松的条件下对保持正数的方案的最佳均方收敛速率,与文献中现有的相关结果进行了比较。还报告了数值示例以确认先前的研究结果。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】实值与凸分析,172页pdf,Real and Convex Analysis
专知会员服务
42+阅读 · 2023年1月2日
[WWW2021]图结构估计神经网络
专知会员服务
43+阅读 · 2021年3月29日
专知会员服务
51+阅读 · 2020年12月14日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员