In directional statistics, the von Mises-Fisher (vMF) distribution is one of the most basic and popular probability distributions for data on the unit hypersphere. Recently, the spherical normal (SN) distribution was proposed as an intrinsic counterpart to the vMF distribution by replacing the standard Euclidean norm with the great-circle distance, which is the shortest path joining two points on the unit sphere. We propose numerical approaches for parameter estimation since there are no analytic formula available. We consider the estimation problems in a general setting where non-negative weights are assigned to observations. This leads to a more interesting contribution for model-based clustering on the unit hypersphere by finite mixture model with SN distributions. We validate efficiency of optimization-based estimation procedures and effectiveness of SN mixture model using simulated and real data examples.
翻译:在方向统计中, von Mises-Fisher (vMF) 分布是单位超轴数据最基本和最受欢迎的概率分布之一。最近,球体正常分布被建议作为VMF分布的内在对应物,用大圆环距离取代标准的Euclidean 规范,这是连接单位领域两点的最短路径。我们建议了参数估计的数值方法,因为没有可用的分析公式。我们考虑的是非负重被分配到观测的一般环境中的估计问题。这导致以SN分布的有限混合物模型对单位超轴进行基于模型的集群,我们用模拟和真实数据实例验证了基于优化的估计程序的效率以及SN混合物模型的有效性。