Models defined by moment conditions are at the center of structural econometric estimation, but economic theory is mostly silent about moment selection. A large pool of valid moments can potentially improve estimation efficiency, whereas a few invalid ones may undermine consistency. This paper investigates the empirical likelihood estimation of these moment-defined models in high-dimensional settings. We propose a penalized empirical likelihood (PEL) estimation and show that it achieves the oracle property under which the invalid moments can be consistently detected. While the PEL estimator is asymptotically normally distributed, a projected PEL procedure can further eliminate its asymptotic bias and provide more accurate normal approximation to the finite sample distribution. Simulation exercises are carried out to demonstrate excellent numerical performance of these methods in estimation and inference.
翻译:由瞬间条件定义的模型是结构计量经济学估计的中心,但经济理论大多对瞬间选择保持沉默。 大量有效时间可能提高估计效率, 少数无效时间可能会破坏一致性。 本文调查了这些瞬间定义模型在高维环境中的经验性概率估计。 我们提出了一个惩罚性的经验性可能性估计, 并表明它达到了可以一致检测无效时间的极值属性。 虽然PEL估计数据通常没有被随机地分布, 预测的PEL程序可以进一步消除其无现时偏差, 并为有限的抽样分布提供更准确的正常近似。 进行了模拟练习, 以展示这些方法在估计和推断方面的极好的数字性表现 。