Several types of simultaneous approximation term (SAT) for diffusion problems discretized with diagonal-norm multidimensional summation-by-parts (SBP) operators are analyzed based on a common framework. Conditions under which the SBP-SAT discretizations are consistent, conservative, adjoint consistent, and energy stable are presented. For SATs leading to primal and adjoint consistent discretizations, the error in output functionals is shown to be of order $h^{2p}$ when a degree $p$ multidimensional SBP operator is used to discretize the spatial derivatives. SAT penalty coefficients corresponding to various discontinuous Galerkin fluxes developed for elliptic partial differential equations are identified. We demonstrate that the original method of Bassi and Rebay, the modified method of Bassi and Rebay, and the symmetric interior penalty method are equivalent when implemented with SBP diagonal-E operators that have diagonal norm matrix, e.g., the Legendre-Gauss-Lobatto SBP operator in one space dimension. Similarly, the local discontinuous Galerkin and the compact discontinuous Galerkin schemes are equivalent for this family of operators. The analysis remains valid on curvilinear grids if a degree $\le p+1$ bijective polynomial mapping from the reference to physical elements is used. Numerical experiments with the two-dimensional Poisson problem support the theoretical results.
翻译:在共同框架的基础上,对与单向-北方多维加和分解操作员分离的散射问题若干类型的同时近似值(SAT),根据共同框架分析了SBP-SAT离散的一致、保守、联合一致和能源稳定的条件;对于导致原始和联合一致离散的沙特卫星,输出功能中的误差为$h ⁇ 2p},当使用一个有度的多维SBP操作员将空间衍生物分解时,产出功能中的误差为$h ⁇ 2p}。对于为椭圆部分差异方程开发的各种不连续性加热金通量的沙特卫星惩罚系数也作了分析;我们证明,巴西和雷拜的原始方法、经修改的巴西和雷拜的方法和对等性内部罚款方法,在与SBPBPad dag-E操作员实施具有对等规范矩阵时,例如,在空间层面使用传说-Gaus-LObatto SBBP操作员。同样,当地不连续加勒金和紧压基基基质的纸质加勒平基数据系统分析,如果在这种直线上,则以直基基基的基加勒平基基基基基内的基数据系的基数据系的内,则,则等号的基底基数据系的基图是用于的基数。