Several types of simultaneous approximation term (SAT) for diffusion problems discretized with diagonal-norm multidimensional summation-by-parts (SBP) operators are analyzed based on a common framework. Conditions under which the SBP-SAT discretizations are consistent, conservative, adjoint consistent, and energy stable are presented. For SATs leading to primal and adjoint consistent discretizations, the error in output functionals is shown to be of order $h^{2p}$ when a degree $p$ multidimensional SBP operator is used to discretize the spatial derivatives. SAT penalty coefficients corresponding to various discontinuous Galerkin fluxes developed for elliptic partial differential equations are identified. We demonstrate that the original method of Bassi and Rebay, the modified method of Bassi and Rebay, and the symmetric interior penalty method are equivalent when implemented with SBP diagonal-E operators that have diagonal norm matrix, e.g., the Legendre-Gauss-Lobatto SBP operator in one space dimension. Similarly, the local discontinuous Galerkin and the compact discontinuous Galerkin schemes are equivalent for this family of operators. The analysis remains valid on curvilinear grids if a degree $\le p+1$ bijective polynomial mapping from the reference to physical elements is used. Numerical experiments with the two-dimensional Poisson problem support the theoretical results.


翻译:在共同框架的基础上,对与单向-北方多维加和分解操作员分离的散射问题若干类型的同时近似值(SAT),根据共同框架分析了SBP-SAT离散的一致、保守、联合一致和能源稳定的条件;对于导致原始和联合一致离散的沙特卫星,输出功能中的误差为$h ⁇ 2p},当使用一个有度的多维SBP操作员将空间衍生物分解时,产出功能中的误差为$h ⁇ 2p}。对于为椭圆部分差异方程开发的各种不连续性加热金通量的沙特卫星惩罚系数也作了分析;我们证明,巴西和雷拜的原始方法、经修改的巴西和雷拜的方法和对等性内部罚款方法,在与SBPBPad dag-E操作员实施具有对等规范矩阵时,例如,在空间层面使用传说-Gaus-LObatto SBBP操作员。同样,当地不连续加勒金和紧压基基基质的纸质加勒平基数据系统分析,如果在这种直线上,则以直基基基的基加勒平基基基基基内的基数据系的基数据系的内,则,则等号的基底基数据系的基图是用于的基数。

0
下载
关闭预览

相关内容

专知会员服务
85+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关VIP内容
相关资讯
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员