In this paper we introduce a procedure for identifying optimal methods in parametric families of numerical schemes for initial value problems in partial differential equations. The procedure maximizes accuracy by adaptively computing optimal parameters that minimize a defect-based estimate of the local error at each time-step. Viable refinements are proposed to reduce the computational overheads involved in the solution of the optimization problem, and to maintain conservation properties of the original methods. We apply the new strategy to recently introduced families of conservative schemes for the Korteweg-de Vries equation and for a nonlinear heat equation. Numerical tests demonstrate the improved efficiency of the new technique in comparison with existing methods.
翻译:在本文中,我们引入了一种程序,用于确定在局部差分方程中初始价值问题数字方案参数组中的最佳方法;该程序通过适应性计算最佳参数,使准确性最大化,从而在每一时间步骤中最大限度地减少对当地误差的基于缺陷的估计;建议进行可行的改进,以减少解决优化问题所涉及的计算间接费用,并保持原有方法的养护特性;我们对最近引进的Korteweg-de Vries等式和非线性热等式保守方案组采用新战略;数字测试表明,与现有方法相比,新技术的效率有所提高。