Analysing correlations between streams of events is an important problem. It arises for example in Neurosciences, when the connectivity of neurons should be inferred from spike trains that record neurons' individual spiking activity. While recently some approaches for inferring delayed synaptic connections have been proposed, they are limited in the types of connectivities and delays they are able to handle, or require computation-intensive procedures. This paper proposes a faster and more flexible approach for analysing such delayed correlated activity: a statistical approach for the Analysis of Connectivity in spiking Events (ACE), based on the idea of hypothesis testing. It first computes for any pair of a source and a target neuron the inter-spike delays between subsequent source- and target-spikes. Then, it derives a null model for the distribution of inter-spike delays for \emph{uncorrelated}~neurons. Finally, it compares the observed distribution of inter-spike delays to this null model and infers pairwise connectivity based on the Pearson's Chi-squared test statistic. Thus, ACE is capable to detect connections with a priori unknown, non-discrete (and potentially large) inter-spike delays, which might vary between pairs of neurons. Since ACE works incrementally, it has potential for being used in online processing. In our experiments, we visualise the advantages of ACE in varying experimental scenarios (except for one special case) and in a state-of-the-art dataset which has been generated for neuro-scientific research under most realistic conditions.


翻译:分析事件流之间的相关性是一个重要问题。 例如, Neuroscience 是一个重要问题。 例如,神经科学 中出现神经元的连通性应该从记录神经神经元个体跳动活动的钉子列列中推断出。 虽然最近提出了一些方法来推断延迟的合成连接, 但最近提出了一些方法, 它们在连接类型上是有限的, 以及它们能够处理或需要计算密集程序时的延迟。 本文提出了一种更快和更加灵活的方法来分析这种延迟关联性的活动: 一种统计方法, 用于根据假设测试的理念分析突发事件( ACE ) 的连通性分析。 它首先用来计算任何一对源和目标神经元的连接, 从而计算出随后源和目标冲突变异的神经元连接延迟。 之后, 它产生了一个完全无效的模型, 用于分配\ emph{ uncor controduct- roducal lacal- lacretailation the more ex- creal liver recal- cal laverialal laveal —— 在前的Acal- procal- procreal- preal proviewcal procal be be be be be be be be be be be lifolveal be be list list list list ex ex ex ex ex be be be be be be be ex ex be be be iver list iver lavecreviolvecolvecolvecretocretocal laved pretal be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be i i i i lavedal i i i i i i i i i ex i ex ex ex pal i i i i ex be be be be be be be be be be be be i i i i i i i i i i i i i i i

0
下载
关闭预览

相关内容

专知会员服务
3+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2017年10月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2017年10月12日
Top
微信扫码咨询专知VIP会员