The clustering methods have been used in a variety of fields such as image processing, data mining, pattern recognition, and statistical analysis. Generally, the clustering algorithms consider all variables equally relevant or not correlated for the clustering task. Nevertheless, in real situations, some variables can be correlated or may be more or less relevant or even irrelevant for this task. This paper proposes partitioning fuzzy clustering algorithms based on Euclidean, City-block and Mahalanobis distances and entropy regularization. These methods are an iterative three steps algorithms which provide a fuzzy partition, a representative for each fuzzy cluster, and the relevance weight of the variables or their correlation by minimizing a suitable objective function. Several experiments on synthetic and real datasets, including its application to noisy image texture segmentation, demonstrate the usefulness of these adaptive clustering methods.
翻译:集群方法已在图像处理、数据挖掘、模式识别和统计分析等不同领域使用,一般而言,集群算法认为所有变量与集群任务同等相关或无关,然而,在实际情况下,有些变量可能与该任务相关,或可能或多或少相关,甚至与该任务无关。本文提议根据Euclidean、City-block和Mahalanobis的距离和恒温调节法来分割模糊的组合算法。这些方法是一种迭接的三步算法,提供模糊的分隔法、每个模糊的集群的代表,以及通过尽量减少适当的客观功能来说明变量的相关性或相关性。关于合成和真实数据集的一些实验,包括将其应用于噪音的图像纹理分解法,都显示了这些适应性组合方法的效用。