Osteoporosis is a common chronic metabolic bone disease often under-diagnosed and under-treated due to the limited access to bone mineral density (BMD) examinations, e.g. via Dual-energy X-ray Absorptiometry (DXA). This paper proposes a method to predict BMD from Chest X-ray (CXR), one of the most commonly accessible and low-cost medical imaging examinations. Our method first automatically detects Regions of Interest (ROIs) of local CXR bone structures. Then a multi-ROI deep model with transformer encoder is developed to exploit both local and global information in the chest X-ray image for accurate BMD estimation. Our method is evaluated on 13719 CXR patient cases with ground truth BMD measured by the gold standard DXA. The model predicted BMD has a strong correlation with the ground truth (Pearson correlation coefficient 0.894 on lumbar 1). When applied in osteoporosis screening, it achieves a high classification performance (average AUC of 0.968). As the first effort of using CXR scans to predict the BMD, the proposed algorithm holds strong potential for early osteoporosis screening and public health promotion.
翻译:骨质疏松是一种常见的慢性代谢性骨骼疾病,经常诊断不足和治疗不足,原因是获得骨质矿密度检查(BMD)的机会有限,例如通过双能X射线Absorptiom(DXA)进行骨质矿密度检查(BMD)的机会有限。本文建议采用一种方法,从最常见和成本最低的医疗成像检查之一Chest X光(CXR)预测BMD。我们的方法首先自动检测当地CXR骨骼结构中感兴趣的区域(ROI),然后开发一个带有变压器编码器的多ROI深度模型,利用胸部X射线图像中的当地和全球信息进行准确的BMD估计。我们的方法是对13719 CXR病人的地面真象BMD进行评估,通过黄金标准DXA进行测得。模型预测的BMD与地面真象有很强的关联性(Lubbar的Pearson相关系数0.894)。在进行骨质疏松检查时,它达到高的分类性表现(平均为0.968AUCUCS),这是利用CXR扫描系统早期扫描预测潜在健康前景的首次尝试。