项目名称: 矩阵联合块对角化的理论与算法

项目编号: No.11301013

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 蔡云峰

作者单位: 北京大学

项目金额: 22万元

中文摘要: 矩阵(近似)联合块对角化是指求一个合同变换矩阵使得给定的多个对称矩阵在这个合同变换下同时(近似)成为具有相同结构的块对角矩阵。矩阵联合块对角化问题可以被看为三阶张量的一种分解。矩阵联合块对角化问题在许多信号处理的问题中都有应用,例如源定位,卷积盲源分离等。现有方法都是在假设块对角矩阵的结构是已知的条件下进行的,这就要求人们事先对问题有一定的了解。然而,在实际应用中,这个假设不总是成立。在这个项目中,我们将在不假设已知块对角结构的前提下,探讨研究矩阵联合块对角化问题(盲联合块对角化)。理论上,我们将利用多项式特征值问题的谱分解理论与多项式特征值反问题的理论,致力于建立矩阵盲联合块对角化问题解存在的充分必要条件,并基于此条件挖掘盲联合近似块对角化的理论。算法上,我们利用建立的理论,发展一类全新的算法,并使其高效、可靠、稳定。最终,通过实际问题数据检验我们的算法,并希望其能被一些软件所采用。

中文关键词: 张量分解;矩阵联合块对角化;独立成分分析;;

英文摘要: (Approximate) Joint Block Diagonalization ((A)JBD) of a set of symmetric matrices is to find a congruent transformation which makes the matrices are (approximately) simultaneously block diagonalized with the same zero pattern. JBD problem can be deemed as a decomposition of a third order tensor. AJBD problem arises in many signal processing applications, eg. source localization, convolutive source separation, etc. Currently, when dealing with AJBD problem, people assume that the zero pattern of the block diagonal matrix is given, which requires priori knowledge of the problem . However, this assumption is not always true in practice. In this project, we will focus in (A)JBD in the case when the zero pattern of the block diagonal matrix is unknown(hereafter we will call this case General (A)JBD), which would of course have great impact in pratical applications. Theotically, using the spectral decomposition theory on Polynomial Eigenvalue Problem(PEP) and inverse PEP theory, we shall devote to the establishment of the necessary and sufficient condition for the exsitence of the solutions to Blind JBD. Based on the necessary and sufficient condition, we shall then turn to the research on blind AJBD. Algorithmatically, using the established theory for blind AJBD, we shall propose a class of efficient, reliable and r

英文关键词: tensor decomposition;matrix joint block diagonalization;independent component analysis;;

成为VIP会员查看完整内容
0

相关内容

【广东工业大学蔡瑞初教授】因果关系发现进展及其应用
【NeurIPS2021】序一致因果图的多任务学习
专知会员服务
19+阅读 · 2021年11月7日
专知会员服务
6+阅读 · 2021年9月20日
算法分析导论, 593页pdf
专知会员服务
147+阅读 · 2021年8月30日
专知会员服务
20+阅读 · 2021年8月24日
专知会员服务
113+阅读 · 2021年7月24日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
28+阅读 · 2020年10月2日
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
论文浅尝 | 基于正交普鲁克分析的高效知识图嵌入学习
卷积神经网络数学原理解析
算法与数学之美
19+阅读 · 2019年8月23日
面试时让你手推公式不在害怕 | 梯度下降
计算机视觉life
14+阅读 · 2019年3月27日
一文读懂图像压缩算法
七月在线实验室
15+阅读 · 2018年5月2日
一文读懂贝叶斯分类算法(附学习资源)
大数据文摘
12+阅读 · 2017年12月14日
干货|代码原理教你搞懂SGD随机梯度下降、BGD、MBGD
机器学习研究会
12+阅读 · 2017年11月25日
【深度学习基础】1.监督学习和最优化
微信AI
0+阅读 · 2017年6月7日
国家自然科学基金
6+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Sensitivity of sparse codes to image distortions
Arxiv
0+阅读 · 2022年4月15日
Arxiv
15+阅读 · 2021年2月19日
小贴士
相关VIP内容
【广东工业大学蔡瑞初教授】因果关系发现进展及其应用
【NeurIPS2021】序一致因果图的多任务学习
专知会员服务
19+阅读 · 2021年11月7日
专知会员服务
6+阅读 · 2021年9月20日
算法分析导论, 593页pdf
专知会员服务
147+阅读 · 2021年8月30日
专知会员服务
20+阅读 · 2021年8月24日
专知会员服务
113+阅读 · 2021年7月24日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
28+阅读 · 2020年10月2日
相关资讯
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
论文浅尝 | 基于正交普鲁克分析的高效知识图嵌入学习
卷积神经网络数学原理解析
算法与数学之美
19+阅读 · 2019年8月23日
面试时让你手推公式不在害怕 | 梯度下降
计算机视觉life
14+阅读 · 2019年3月27日
一文读懂图像压缩算法
七月在线实验室
15+阅读 · 2018年5月2日
一文读懂贝叶斯分类算法(附学习资源)
大数据文摘
12+阅读 · 2017年12月14日
干货|代码原理教你搞懂SGD随机梯度下降、BGD、MBGD
机器学习研究会
12+阅读 · 2017年11月25日
【深度学习基础】1.监督学习和最优化
微信AI
0+阅读 · 2017年6月7日
相关基金
国家自然科学基金
6+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员