Symbol-pair codes introduced by Cassuto and Blaum in 2010 are designed to protect against the pair errors in symbol-pair read channels. One of the central themes in symbol-error correction is the construction of maximal distance separable (MDS) symbol-pair codes that possess the largest possible pair-error correcting performance. In this paper, we construct more general generator polynomials for two classes of MDS symbol-pair codes with code length $lp$. Based on repeated-root cyclic codes, we derive all MDS symbol-pair codes of length $3p$, when the degree of the generator polynomials is no more than 10. We also give two new classes of (almost maximal distance separable) AMDS symbol-pair codes with the length $lp$ or $4p$ by virtue of repeated-root cyclic codes. For length $3p$, we derive all AMDS symbol-pair codes, when the degree of the generator polynomials is less than 10. The main results are obtained by determining the solutions of certain equations over finite fields.
翻译:Cassuto和Blaum于2010年推出的符号-符号代码设计是为了防止符号-符号阅读频道中的对称错误。符号-错误校正的中心主题之一是建造最大距离的符号-符号代码(MDS),这些代码拥有最大可能的对对式代码校正性能。在本文中,我们为两类MDS符号-符号代码建造了更普通的发电机多义代码,代码长度为$lp$。根据反复根拔的周期代码,我们得出了所有3p$的MDS符号-符号长度代码,当发电机多义器的程度不超过10美元时,我们通过确定某些等式在固定字段上的解决方案,得出了主要结果。