We present a new data-driven approach with physics-based priors to scene-level normal estimation from a single polarization image. Existing shape from polarization (SfP) works mainly focus on estimating the normal of a single object rather than complex scenes in the wild. A key barrier to high-quality scene-level SfP is the lack of real-world SfP data in complex scenes. Hence, we contribute the first real-world scene-level SfP dataset with paired input polarization images and ground-truth normal maps. Then we propose a learning-based framework with a multi-head self-attention module and viewing encoding, which is designed to handle increasing polarization ambiguities caused by complex materials and non-orthographic projection in scene-level SfP. Our trained model can be generalized to far-field outdoor scenes as the relationship between polarized light and surface normals is not affected by distance. Experimental results demonstrate that our approach significantly outperforms existing SfP models on two datasets. Our dataset and source code will be publicly available at https://github.com/ChenyangLEI/sfp-wild
翻译:我们提出了一个新的数据驱动方法,以物理为根据的先导,从单一的极化图像中进行场景正常估计。极化(SfP)的现有形状主要侧重于估计单一物体的正常度,而不是野外的复杂场景。高质量场景水平SfP的关键障碍是在复杂的场景中缺乏真实世界SfP数据。因此,我们提供了第一个真实世界场景SfP数据集,配对输入的极化图像和地面真相普通地图。然后,我们提出了一个基于学习的框架,配有多头自留模块和查看编码,目的是处理复杂材料和非对地图像在现场SfP中造成的日益严重的两极化的模糊性。我们经过训练的模型可以被广泛推广到远处的室外场,因为极化光和表面正常之间的关系不受距离的影响。实验结果表明,我们的方法大大超越了两个数据集上现有的SfP模型。我们的数据集和源代码将在https://github.com/ChenyangLEI/sfpwild公开查阅。我们的数据设置和源代码将在https://giththrodub.com/ChyangLEI/sffwild)。