项目名称: 哈密顿偏微分方程中的小分母问题

项目编号: No.11301072

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 徐新冬

作者单位: 东南大学

项目金额: 22万元

中文摘要: 物理中如薛定谔方程,波动方程、流体动力学中的欧拉方程等大量的偏微分方程都具有无穷维哈密顿系统结构。对它们的拟周期解与概周期解的存在性、索伯列夫范数的增长性等问题的研究最终都需要解决著名的"小分母"问题。我们计划研究具有各种频率特征的拟周期解,发展适用于刘维尔频率下非线性问题的迭代框架,对概周期解现有的结果进一步完善,对解的索伯列夫范数进行更深入的研究。这些问题的解决依赖于对频率漂移更加深刻的认识,挖掘其中所隐含的关于参数的非退化性;对方程本身的特定结构分析等;在这些方面我们已有比较好的结论与想法。我们的研究将涉及Nash-Moser迭代、KAM理论、正规形方法等各个方面。

中文关键词: 哈密顿系统;KAM 理论;刘伟尔频率;拟周期解;概周期解

英文摘要: A large number of partial differential equations of Physics share the structure of infinite-dimensional Hamiltonian system. The Schr?dinger equation, the wave equation, the Euler equations of hydrodynamics are all among this class. The investigation of periodic, quasi-periodic and almost periodic solution, the growth of sobolev norm leads to the well known "small divisor problem". We aim to get quasi periodic orbits with any kind of frequency structure, and develop a frame adapt to nonlinear perturbation problem with Liouville frequency. To enrich the result on existence of quasi periodic solution,almost periodic solution and so on, more special structure of given equation are needed and also the hidden nondegenerate condition of frequency drift. We also interested on the growth of sobolev norm, which gives more information on difussion of energy. In all these field there are many problems need to solve, our group have many good ideas now. Our approach will combine Nash-Moser Iteration, KAM theorem, normal form technical and so on.

英文关键词: Hamilton System;KAM Theory;Liouvillean Frequency;Quasi Periodic Solution;Almost Periodic Solution

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】神经分段常时滞微分方程
专知会员服务
34+阅读 · 2022年1月14日
专知会员服务
14+阅读 · 2021年8月29日
专知会员服务
21+阅读 · 2021年8月24日
专知会员服务
12+阅读 · 2021年7月27日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
专知会员服务
118+阅读 · 2021年1月31日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
专知会员服务
74+阅读 · 2020年12月7日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
训练1000层的Transformer究竟有什么困难?
PaperWeekly
0+阅读 · 2022年3月13日
【AAAI 2022】神经分段常时滞微分方程
专知
2+阅读 · 2022年1月14日
图神经网络三剑客:GCN、GAT与GraphSAGE
PaperWeekly
65+阅读 · 2020年2月27日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
近期语音类前沿论文
深度学习每日摘要
14+阅读 · 2019年3月17日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月15日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
小贴士
相关主题
相关VIP内容
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
34+阅读 · 2022年1月14日
专知会员服务
14+阅读 · 2021年8月29日
专知会员服务
21+阅读 · 2021年8月24日
专知会员服务
12+阅读 · 2021年7月27日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
专知会员服务
118+阅读 · 2021年1月31日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
专知会员服务
74+阅读 · 2020年12月7日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
训练1000层的Transformer究竟有什么困难?
PaperWeekly
0+阅读 · 2022年3月13日
【AAAI 2022】神经分段常时滞微分方程
专知
2+阅读 · 2022年1月14日
图神经网络三剑客:GCN、GAT与GraphSAGE
PaperWeekly
65+阅读 · 2020年2月27日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
近期语音类前沿论文
深度学习每日摘要
14+阅读 · 2019年3月17日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员