项目名称: 非均匀海森堡铁磁旋转系统中高阶非线性薛定谔模型的解析研究
项目编号: No.11426041
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 王盼
作者单位: 北京体育大学
项目金额: 3万元
中文摘要: 近些年随着非线性科学中孤子理论的飞速发展,非线性发展方程的解析和可积性研究成为当前数学研究的热点课题。但是,通过反散射方法研究非线性发展方程的解析和可积性问题越来越困难,双线性方法和计算机符号计算是解决该问题的有效手段。本项目以非均匀的海森堡铁磁旋转系统中高阶非线性薛定谔模型为研究对象,通过在双线性方法的基础上引入辅助函数,并利用计算机符号计算,系统地研究了该模型的单孤子、双孤子和N孤子的解析解,从解析角度分析孤子的传播和相互作用的本质和规律,并从可积性角度分析得到该模型的无穷守恒律。本项目的研究方法和成果揭示了一类重要的非线性发展方程的解析解和可积性质,提供了研究其他空间变系数非线性发展方程解析解和可积性的途径,丰富了非线性发展方程的解析研究理论。
中文关键词: 非线性物理模型;孤子解;可积性;守恒律;怪波解
英文摘要: With the rapid development of the soliton theory in nonlinear science, problems from the analitical solutions and integrability of the nonlinear evolution equations become a focus of mathematical research. However, it becomes more and more difficult to study the analitical solutions and integrability of the nonlinear evolution equations by the inverse scatter method, the Hirota method and symbolic computation is an effective way to solve this problem. This project aims at the high-order nonlinear Schrodinger models from the inhomogeneous Heisenberg ferromagnetic spin system, whose cases of the one, two and N soliton solutions are obtained by the Hirota method and symbolic computation. Moreover, the infinite conservation laws for this models are revealed through the integrable analysis.The method and results in this project reveal the characters of a class of the analytical solutions and integrability for the nonlinear evolution equations, its also provide an effective approach to investigate other nonlinear evolution equations, and consequently enrich the theory of nonlinear evolution equations.
英文关键词: nonlinear physical models;soliton solutions;integrable property;conservation laws;rogue wave solutions