In community-based software development, developers frequently rely on live-chatting to discuss emergent bugs/errors they encounter in daily development tasks. However, it remains a challenging task to accurately record such knowledge due to the noisy nature of interleaved dialogs in live chat data. In this paper, we first formulate the task of identifying and synthesizing bug reports from community live chats, and propose a novel approach, named BugListener, to address the challenges. Specifically, BugListener automates three sub-tasks: 1) Disentangle the dialogs from massive chat logs by using a Feed-Forward neural network; 2) Identify the bug-report dialogs from separated dialogs by modeling the original dialog to the graph-structured dialog and leveraging the graph neural network to learn the contextual information; 3) Synthesize the bug reports by utilizing the TextCNN model and Transfer Learning network to classify the sentences into three groups: observed behaviors (OB), expected behaviors (EB), and steps to reproduce the bug (SR). BugListener is evaluated on six open source projects. The results show that: for bug report identification, BugListener achieves the average F1 of 74.21%, improving the best baseline by 10.37%; and for bug report synthesis task, BugListener could classify the OB, EB, and SR sentences with the F1 of 67.37%, 87.14%, and 65.03%, improving the best baselines by 7.21%, 7.38%, 5.30%, respectively. A human evaluation also confirms the effectiveness of BugListener in generating relevant and accurate bug reports. These demonstrate the significant potential of applying BugListener in community-based software development, for promoting bug discovery and quality improvement.


翻译:在基于社区的软件开发中,开发者经常依靠现场聊天来讨论日常开发任务中遇到的突发错误/错误。然而,由于在现场聊天数据中互换对话框的吵吵性质,准确记录这种知识仍然是一项艰巨的任务。在本文中,我们首先制定从社区现场聊天中识别和合成错误报告的任务,并提议一种名为“BugListener”的新颖方法来应对挑战。具体地说,BugListener自动将三个子任务:1)使用Feed-Forward神经网络从大规模聊天日志中分离对话框;2)通过将原始对话框建成图形结构对话框并利用图形神经网络学习背景信息,从分离的对话框中找出错误报告,3)通过使用TextCNN模型和转移学习网络将错误报告分为三类:观察到的行为(Ob)、预期行为(EB)以及复制错误(SR),在6个开放源项目中评估了Buglisher 评估了错误报告的有效性;2)通过将原始对话框的原始对话框、Blickrlicklick报告分别用于BBBBB的升级,这些平均报告,这些基准报告显示:Bblickslick 的升级报告在10的升级报告中可以实现。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员