项目名称: 基于视觉感知和形状语义的快速水平集图像分割方法研究

项目编号: No.61201293

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 电子学与信息系统

项目作者: 王斌

作者单位: 西安电子科技大学

项目金额: 25万元

中文摘要: 图像分割是由图像处理向图像分析与理解过渡的重要桥梁,是计算机视觉等相关研究领域的基础科学问题。近年来各种新理论和方法不断涌现,其中水平集分割方法具有更为统一的理论与框架,能够通过能量泛函整合图像的低层特征和外部约束条件实现分割,成为目前图像分割方法的一个重要分支。然而,目前的水平集图像分割方法并不完善,仍存在(1)水平集函数簇构成的空间非凸,导致能量泛函存在局部极值等优化问题;(2)水平集函数演化中函数初始化、演化停止条件设计不尽完善,对目标边缘和形状语义刻画能力有限,且不能实现自动分割;(3)水平集函数演化缺少并行的快速实现方法,限制了分割方法的实际应用。本项目基于人类视觉感知模型、稀疏表示以及格子波尔兹曼方法,研究符合人眼视觉感知特性且具有形状语义选择性的快速水平集图像分割方法。以上研究有助于完善和扩展现有水平集图像分割的理论与方法,也为图像分析与理解等高层应用提供实用工具。

中文关键词: 视觉显著度;格子玻尔兹曼方法;形状先验;水平集方法;图像分割

英文摘要: Being a fundamental problem in computer vision and the related research fields, image segmentation is an important bridge from image processing to image analysis and understanding. In recent years, many new theories and methods rose up, of which level set based image segmentation methods have became a popular and important branch for providing a general framework for image segmentation. This framework integrates the low level image features and the different constraints into an energy functional to realize image segmentation, but it is not perfect and still has many defect issues as follows, (1) the space spanned by level set functions is not convex, which causes some optimal problems, e.g., the local optimums; (2) in the evolution of level set function, the designs of initialization and stopping criterion are not qualified enough to depict the object boundaries and shape semantic, meanwhile, the segmentation methods cannot be executed automatically; (3) the level set based image segmentation methods are lack of the fast and parallel computing realizations, which limits their extension and application. Based on human visual perception model, sparse representation and lattice Boltzmann method, our applicant attempts to realize the level set based image segmentation methods conforming visual perception and driven

英文关键词: visual saliency;lattice Boltzmann method;shape priors;level set method;image segmentation

成为VIP会员查看完整内容
1

相关内容

基于流线的流场可视化绘制方法综述
专知会员服务
26+阅读 · 2021年12月9日
【博士论文】基于深度学习的单目场景深度估计方法研究
专知会员服务
69+阅读 · 2021年3月29日
专知会员服务
61+阅读 · 2021年3月6日
专知会员服务
85+阅读 · 2021年1月7日
专知会员服务
77+阅读 · 2020年12月6日
图像分割方法综述
专知会员服务
54+阅读 · 2020年11月22日
 图像内容自动描述技术综述
专知会员服务
86+阅读 · 2019年11月17日
NeurIPS 2021 | 物体检测与分割的零标签视觉学习
微软研究院AI头条
0+阅读 · 2021年12月1日
图像描述生成研究进展
专知
1+阅读 · 2021年3月29日
图像修复研究进展综述
专知
19+阅读 · 2021年3月9日
图像分割的U-Net系列方法
极市平台
56+阅读 · 2019年10月21日
最全综述 | 图像分割算法
计算机视觉life
14+阅读 · 2019年6月20日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
15+阅读 · 2021年7月14日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
小贴士
相关VIP内容
基于流线的流场可视化绘制方法综述
专知会员服务
26+阅读 · 2021年12月9日
【博士论文】基于深度学习的单目场景深度估计方法研究
专知会员服务
69+阅读 · 2021年3月29日
专知会员服务
61+阅读 · 2021年3月6日
专知会员服务
85+阅读 · 2021年1月7日
专知会员服务
77+阅读 · 2020年12月6日
图像分割方法综述
专知会员服务
54+阅读 · 2020年11月22日
 图像内容自动描述技术综述
专知会员服务
86+阅读 · 2019年11月17日
相关资讯
NeurIPS 2021 | 物体检测与分割的零标签视觉学习
微软研究院AI头条
0+阅读 · 2021年12月1日
图像描述生成研究进展
专知
1+阅读 · 2021年3月29日
图像修复研究进展综述
专知
19+阅读 · 2021年3月9日
图像分割的U-Net系列方法
极市平台
56+阅读 · 2019年10月21日
最全综述 | 图像分割算法
计算机视觉life
14+阅读 · 2019年6月20日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员