项目名称: 光敏金纳米探针的构建及对生物组织中胺类神经递质的靶向识别研究

项目编号: No.21275130

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 王爱军

作者单位: 浙江师范大学

项目金额: 80万元

中文摘要: 本项目拟以胺类神经递质为靶向分子,设计、筛选出对靶向分子有高选择性识别的功能分子,并将其修饰到金纳米表面,构建光敏金纳米探针。研究其与靶向分子的识别过程和识别机制,揭示微观界面和组装结构对靶向分子识别的光谱响应规律,探讨功能分子与靶向分子之间的构效关系。依据金纳米探针识别靶向分子前后光谱信号的变化,建立高灵敏、高选择的分析方法。优化实验条件,提高金纳米探针的抗干扰能力。结合样品前处理技术和活体微透析技术,分别实现非活体生物组织(如血清等)及活体组织(如鼠脑等)中靶向分子的痕量检测。结合表面增强拉曼技术,探索靶向分子的痕量、原位、活体分析(鼠脑组织)。该项目将先进的纳米技术与现代分析方法相结合,建立非活体及活体生物组织中靶向分子的高灵敏、高选择、多光谱探测的新方法,发展新型光敏纳米功能探针和具有自主创新的光敏传感器件。

中文关键词: 金纳米探针;靶向识别;生物成像;多巴胺;多级微纳结构

英文摘要: In this study, many efforts are devoted to designing and constructing functional gold nanoparticles-based optical probe for high recognition and sensing of amine neurotransmitters as targets. The target recognition procedure and mechanism are investigated to reveal the effects of microscopic interface and assembly nanostructures. Meanwhile, the relationship of the structure and functionality between the probe and target is explored. High sensitive and selective analytical methods are developed based on the optical signal changes of the probes. Using sample pretreatment and in vivo microdialysis, the trace targes are detected in non-living tissue (e.g. serum) and in vivo tissues (e.g. rat brain) with improved anti-interference ability under optimal conditions, respectively. Furthermore, the targets can be in situ and in vivo detected in rat brain by surface-enhanced Raman spectroscopy. Combining advanced nanotechnology with modern analytical technique, multi-spectra analytical approaches of targets with high sensitivity and selectivity are proposed in non-living and in vivo tissues, which can be extended to other probes-based colorimetric sensing with independent innovation.

英文关键词: Gold nanoprobes;Target recognition;Bio-imaging;Dopamine;Hierarchical micro-/nano-structures

成为VIP会员查看完整内容
0

相关内容

《深度学习中神经注意力模型》综述论文
专知会员服务
113+阅读 · 2021年12月15日
专知会员服务
62+阅读 · 2021年9月20日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
智源发布!《人工智能的认知神经基础白皮书》,55页pdf
基于生理信号的情感计算研究综述
专知会员服务
62+阅读 · 2021年2月9日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
广东疾控中心《新型冠状病毒感染防护》,65页pdf
专知会员服务
19+阅读 · 2020年1月26日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年4月19日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Pre-Training on Dynamic Graph Neural Networks
Arxiv
1+阅读 · 2022年4月18日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
38+阅读 · 2020年3月10日
小贴士
相关主题
相关VIP内容
《深度学习中神经注意力模型》综述论文
专知会员服务
113+阅读 · 2021年12月15日
专知会员服务
62+阅读 · 2021年9月20日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
智源发布!《人工智能的认知神经基础白皮书》,55页pdf
基于生理信号的情感计算研究综述
专知会员服务
62+阅读 · 2021年2月9日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
广东疾控中心《新型冠状病毒感染防护》,65页pdf
专知会员服务
19+阅读 · 2020年1月26日
相关论文
微信扫码咨询专知VIP会员