2020年末,DeepMind开发的第二代深度学习神经网络AlphaFold 2的问世震惊了结构生物学界。AlphaFold解决了困扰科学家几十年的蛋白质折叠问题。最近的研究表明,AlphaFold开创的方法正在向更广泛的生物学界蔓延。在《美国国家科学院院刊》上发表的一篇论文 Deep learning guided optimization of human antibody against SARS-CoV-2 variants with broad neutralization。论文中,科学家描述了修改一种已知的COVID-19抗体的方式,以提高其对多种疾病变体的疗效。地址:https://www.pnas.org/doi/10.1073/pnas.2122954119科学家们写道,「我们可以使抗体宽度以及sars-cov-2变体 (包括 Delta) 的效力提高10到600倍」。他们甚至发现了该方法可以对抗奥密克戎(Omicron)变体迹象的希冀。
2021年年底,人工智能预测蛋白质结构AlphaFold被评Science评为2021十大科学突破之首。人工智能正在催生新的科研范式,AI for Science已经成为许多科学家的共识。 长期以来,蛋白质都是生命科学工作者研究的重点。因为蛋白质是生命活动的主要承担者,甚至毫不夸张的说,没有蛋白质就没有生命。而其中,蛋白质的结构更是众多生命科学工作者研究的热点,毕竟其主要功能是由结构决定的。2020年,AlphaFold2的问世成为生物学界海啸级的地震。紧接着DeepMind开源了AlphaFold2,并能够预测出98.5%的蛋白质结构,让学术圈再次沸腾。不仅如此,研究人员还将其做成了数据集,将其免费开放。 对蛋白质进行系统深入的研究,能让人类从更深层次诠释生命体的构成和运作变化规律,进而全面揭示生命运行、发展的机制,激发生物科学、药物研发、合成生物学方面的发展。另一方面,将人工智能方法应用到蛋白质预测,可以让科研人员从中得到许多借鉴,站在神经网络与深度学习的技术巨人的肩膀上,推动生物界的发展与研究。